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Chapter 1

Introduction

Time-varying volatility models have drawn lately a lot of attention due to their ability

to capture the behavior of financial data such as exchange rates and stock prices. These

models are capable of describing the phenomenon of volatility clustering that is present

in financial data. The estimation of time-varying volatilities and covariances is crucial

for areas such as asset pricing, risk management and portfolio analysis.

In this Thesis the univariate and multivariate models are analyzed. Special effort is

given to models that are incorporated to one of the two main categories of the time-

varying volatility models, the stochastic volatility models (parameter-driven models).

Furthermore, new Markov Chain Monte Carlo algorithms are proposed for certain uni-

variate and multivariate models that are easy to apply and fast to converge.

This Thesis is organized in eleven chapters. The first chapter contains the introduction

of this Thesis. In the second chapter a more inclusive presentation of the time-varying

volatility models can be found. There, the phenomenon of volatility clustering along

with the models that have been developed to explain this phenomenon is presented. In

the third chapter the Bayesian framework and the Markov Chain Monte Carlo (MCMC)

methods are presented. In chapter four the problem of the convergence of the MCMC

algorithms is presented and a new diagnostic that can be used for the detection of the

convergence of the MCMC algorithms is proposed. This convergence diagnostic is based

1



on the subsampling methodology and on the construction of (1− a) 100% confidence

regions for the mean and for the t−percentile. In the fifth chapter the Auxiliary Variable
sampler is described and all the versions of this algorithm and its theoretical properties

are presented.

The sixth chapter presents the existing MCMC algorithms for the case of stochastic

volatility models and in the seventh chapter new MCMC algorithms for the cases of

stochastic volatility model, the unobserved ARCH model, the ARCH model and the

GARCH model are proposed. These new MCMC algorithms are using the Auxiliary

Variable sampling methodology and are consisted by only Gibbs steps. Furthermore,

real data are used for the application of these algorithms and in the eighth chapter the

aforementioned models are compared.

In the ninth chapter a summary of the existing algorithms for the multivariate stochas-

tic volatility is given. Additionally, in the tenth chapter new MCMC algorithms are

proposed for a version of the multivariate stochastic volatility model, the multivariate

unobserved ARCH, the latent factor ARCH model and the latent factor GARCH model.

Furthermore, these models are compared with criteria based on their predictive distribu-

tion.

Finally, chapter eleven contains a summary of this thesis and some points for future

research.

2



Chapter 2

Volatility Time Series Models

2.1 Introduction

Up to 1980 the financial time series modeling have been centered on the conditional first

moments, with any temporal dependencies in the higher order moments treated as a nui-

sance. The last two decades, however, researchers turn their interest in developing new

techniques that allow the modeling of time-varying variances and covariances. This shift-

ing of interest was the result of the increasing importance that the risk plays in modern

economics. The phenomenon of volatility clustering that is apparent in most financial

time series, such as asset returns and exchange rates can be captured by modeling the

conditional second moments.

2.2 Volatility Clustering

The phenomenon of volatility clustering is immediately turned up when we plot an asset

returns series or an exchange rates series through time. As Mandelbrot (1963) wrote,

...large changes tend to be followed by large changes, of either sign, and small changes

tends to be followed by small changes....

This statement is confirmed in Figure 2-1, where the compounded return of the US

3



Figure 2-1: Exchange rates of USD and DEM versus GRD

dollar (USD) and the Germany Marc (DEM) with respect to the Greek Drachma (GRD)

is plotted through time (where the compounded return on the series yt is defined as

yt = 1000 log (xtÁxt−1)). In this plot it is obvious that the series appear major fluctuation

with time periods of large disturbances followed by periods with small disturbances and

vice-versa. Researchers have tried to analyze this behavior using models that allow the

variance of the series to change through time.

2.3 Classifying Models of Changing Volatility

There are numerous models that can capture the phenomenon of volatility clustering,

modeling the conditional variance and covariance of the underline time series (see Shep-
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hard, 1996; Bollerslev, Chou and Kroner, 1992; Gourieroux, 1997). Cox (1981) divided

them into two major classes, observation driven and parameter-driven models. In

order to discuss these two classes we will assume

yt|Ψt ∼ N(0, σ2t ),

where yt is a realization of the stochastic process at time t, N (·, ·) is the Normal den-
sity and Ψt contains all the past information up to time t, i.e. Ψt = {yt, yt−1, ....}
The observation-driven models allow Ψt to be a function of lagged values of yt. The

most typical examples are the Autoregressive Conditional Heteroskedasticity (ARCH)

model (Engle, 1982) and the Generalized Autoregressive Conditional Heteroskedasticity.

(GARCH) model (Bollerslev, 1986). ARCH model put the conditional variance of yt as

a linear function of the squares of the past observation

σ2t = a0 + a1y
2
t−1 + ...+ apy

2
t−p.

Similarly in GARCH model, the conditional variance depends on the lag observations

plus the lag conditional variances

σ2t = a0 + a1y
2
t−1 + ...+ apy

2
t−p + b1σ

2
t−1 + ...+ bqσ

2
t−q.

On the other hand, parameter-driven (or state-space) models putΨt as a function of

some unobserved or ”latent” component. The main representative of this class of models

is the stochastic volatility model (Taylor, 1982). The general form of the stochastic

volatility model

yt|ht ∼ N (0, exp(ht)) ,

ht|a, d, ht−1, σ2η ∼ N
¡
a+ d · ht−1, σ2η

¢
.

5



Here h1, ..., ht (log-volatilities) are unobserved, something which classifies this model as

the parameter-driven models.

Reviews of the literature on this topic are given by Shephard (1996), Bollerslev,

Chou and Kroner (1992), Bera and Higgins (1993), Bollerslev, Engle and Nelson (1994),

Diebold and Lopez (1995), Gourieroux (1997), Hafner (1998), and a collection of ARCH

papers is in Engle (1995).

2.4 Univariate Models

2.4.1 ARCH-type Models

The simplest observation-driven time-varying volatility model is the ARCH model, which

has been proposed by the Engle (1982). The ARCH model of order p can be written as

yt|a,yt−1 ∼ N
¡
0, σ2t

¢
, (2.1)

σ2t = a0 +

pX
i=1

aiy
2
t−i, (2.2)

where yt is the time series at time t, a = (a0, ..., ap) and yt−1 = (yt−1, yt−2, ...). To

prevent the nonnegativity of the conditional variance (2.2) the parameters a0, a1, ..., ap are

restricted to be nonnegative. Following Theorem 2 of Engle (1982), the ARCH(p) process

(2.1) is covariance stationary if and only if all the roots of the associated characteristic

equation lie outside the unit circle, therefore
pP

i=1

ai < 1 . Under these restrictions the

unconditional variance exists and it is equal to V ar (yt) = E (y2t ) = a0Á
µ
1−

pP
i=1

ai

¶
.

The moment conditions of the ARCH(1) model are established by Engle (1982). By

the assumed normality in (2.1) all the odds moments are zero. The second moment E (y2t )

exists only if a1 < 1 and it is equal to V ar (yt) = E (y2t ) = a0Á (1− a21) , the E (y
4
t ) exists

if 3a21 < 1 and it is equal

E
¡
y4t
¢
=

3a20 (1− a21)

(1− a21)
2
(1− 3a21)

.

6



The kurtosis of the unconditional distribution of yt is

Kurtosis (yt) =
E (y4t )

E (y2t )
2 − 3 =

3 (1− a21)

(1− 3a21)
− 3.

The kurtosis for a1 > 0 is greater than zero therefore the unconditional distribution of yt

is leptokurtic. The properties and the estimation of the parameters of the ARCH model

are discussed by Engle (1982), White (1982) and Gourieroux, Monfort and Tragnon

(1984) among several others. Bayesian inference procedures for ARCH models have been

developed by Geweke (1989a, b), Polasek and Muller (1995) and Vrontos (1997).

The GARCH model (Bollerslev, 1986; Taylor, 1986), is a generalization of the ARCH

model. In detail Bollerslev included in the equation (2.2) of the conditional variance

autoregressive terms. The GARCH(p, q) model has the following formula:

yt|a,b,yt−1 ∼ N (0, σt) , (2.3)

σ2t = a0 +

pX
i=1

aiy
2
t−i +

qX
j=1

bjσ
2
t−j, (2.4)

where yt is the time series at time t, a = (a0, ..., ap) , b =(b1, ..., bp) , and yt−1 =

(yt−1, yt−2, ...). Sufficient, but not necessary conditions such that σ2t > 0 for all t are

a0 > 0, ai ≥ 0, i = 1, .., p and bi ≥ 0, i = 1, .., q. From Theorem 1 of Bollerslev (1986), yt
is covariance stationary - which is equivalent to the existence of the unconditional vari-

ance - if and only if
pP

i=1

ai +
qP

j=1

bj < 1. In special case where
pP

i=1

ai +
qP

j=1

bj = 1 the model

is called Integrated GARCH (IGARCH). Under the above restrictions the unconditional

variance of yt under the GARCH(p, q) model is

V ar (yt) = E
¡
y2t
¢
= a0Á

Ã
1−

pX
i=1

ai −
qX

j=1

bj

!
.

Under the assumption of normality in (2.3) all the odds moments are zero. The kurtosis
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of the unconditional distribution of yt under the GARCH(1,1) model is

Kurt(yt) =
E (y4t )

E (y2t )
2 − 3 =

3 + 6a21
(1− 3a21 − 2a1b1 − b21)

− 3.

Note that the forth moment of the GARCH(1,1) exists if and only if 3a21+2a1b1+b
2
1 < 1.If

this condition is true the unconditional density is leptokurtic because the kurtosis is

greater than zero.

Regarding the estimation of the parameters of the GARCH model see Bollerslev

(1986, 1987), Baillie and Bollerslev (1989), Fiorentini, Calzolari and Panattoni (1996).

A Bayesian analysis of GARCH models was proposed by Bauwens and Lubrano (1998),

Muller and Pole (1999), Bos, Mahieu and van Dijk (1999), Vrontos, Dellaportas and

Politis (2000) among several others.

The generalized exponential GARCH model (Nelson 1991)

yt|a,θ, γ ∼ N (0, σt) , (2.5)

log
¡
σ2t
¢
= ωt +

∞X
i=1

aig (εt−i) ,

g (εt) = θεt + γ (|εt|− E |εt|) ,

where yt is the time series at time t, ωt and a = (a1, a2, ...) and εt is a sequence of

independent and identically distributed (i.i.d.) random variables with mean zero and

variance one. For more information regarding the exponential ARCH model see Engle

and Ng (1993), Taylor (1994), Poon and Taylor (1992), Day and Lewis (1992), Kuwahara

and Marsh (1992) and Vrontos, Dellaportas and Politis (2000).

Apart from the above models, many other versions of the ARCH/GARCHmodel have

been proposed in the literature such as Weak GARCH, Fractional Integrated GARCH,

Log GARCH, nonlinear ARCH, asymmetric GARCH, threshold GARCH, ARCH-M etc.

For more information regarding the extensions of the ARCH model see Shephard (1996),

Taylor (1986), Geweke (1988), Pantula (1986), Higgins and Bera (1992), Glosten, Ja-
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gannathan and Runkle (1993), Davidian and Carroll (1987), Lee and Hansen (1994),

Gourieroux and Monfort (1992), He and Terasvirta (1999), Engle, Lilien and Robins

(1987).

2.4.2 Stochastic Volatility Models

The basic alternative to ARCH class of models is the stochastic volatility model which is

included to the class of parameter-driven models. In this class of models the conditional

variance σ2t depends, not on past observation such as ARCH and GARCH processes, but

on some unobserved component or latent structure.

The form of the univariate Stochastic Volatility Model (Taylor, 1982, 1986; Tauchen

and Pitts, 1983) is

yt|ht ∼ N (0, ht) , (2.6)

ht|a, d, σ2h ∼ LN
¡
a+ d log (ht−1) , σ2h

¢
, (2.7)

where yt is the time series at time t, a, d and σ2h are the hyperparameters and LN (·, ·) is
the LogNormal density. We can interpret the latent variable ht as a random and uneven

flow of new information (which is difficult to model directly) into financial markets. The

parameter d can be interpreted as the persistence of the volatility (standard deviation)

and σ2η is the volatility of the latent parameters h =(h1, h2, ..., ht, ...).

To ensure that the series of the log-volatilities to be covariance stationary, the restric-

tion |d| < 1 is imposed. In case that d = 1 then the series of ht is random walk.

An alternative parameterization of the stochastic volatility model that has also at-

tracted some attention is given by

yt|ht ∼ N (0, exp (ht)) , (2.8)

ht|a, d, σ2h ∼ N
¡
a+ dht−1, σ2h

¢
. (2.9)
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Note that, in (2.9) the series of log-volatilities ht follow a standard Gaussian autore-

gressive process (AR(1)).

The unconditional mean and the variance of the latent parameter ht are given by

µh = E(ht) =
a

1− d

σ2h = V ar(ht) =
σ2η

1− d2
.

The odds moments of the time series are zero and the even moments can be found from

the formula

E(yrt ) = E [(εt)
r]E

h
exp(

r

2
ht)
i
=

=
r!

(2)r/2(r/2)!
exp

³r
2
µh + r2σ2h/8

´
.

Moreover, the coefficient of kurtosis is

E (y4t )³
σ2y2
´2 = 3 exp ¡σ2h¢ > 3.

From the above formulas, it is obvious that the distribution of the time series yt is

leptokurtic and symmetric. The dynamic properties of the stochastic volatility model

appear most clearly if we square yt and take it logs. Then

log
¡
y2t
¢
= ht + log

¡
ε2t
¢
.

The log(y2t ) is the sum of an AR(1) component and a white noise, so its autocorrelation

function (ACF) is equivalent to the ACF of an ARMA(1,1). The theoretical properties

of the absolute values of yt are given in Ghysels, Harvey and Renault (1999).

As far as the estimation of the parameters of the stochastic volatility model is con-

cerned, Duffie and Singleton (1993), Melino and Turnbull (1990), Andersen (1996), An-
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dersen and Sorensen (1996) and Andersen et al. (1999) used the Generalized Method of

Moments (GMM) (see, Hamilton, 1994 and Rothenberg, 1973). Quasi-Likelihood method

was used by Harvey, Ruiz and Shephard (1994). Bayesian methods are followed by Shep-

hard (1993, 1996), Pitt and Shephard (1999b), Gilks and Wild (1992), Wild and Gilks

(1993), Jacquier, Polson and Rossi (1994), Kim, Shephard and Chib (1998) and Chib,

Nardari and Shephard (2002).

Apart from ARCH and stochastic volatility models, an additional class of models

has been proposed by Harvey et al. (1992). These models have a different intellectual

perspective but they imply particular forms of conditional heteroskedasticity. The time

series is composed of several sources of errors where all or some of them have an ARCH

form. Since the error components cannot be separately observed given the past informa-

tion, these models can be classified as stochastic volatility models (Shephard 1996). In

general, we can say that this class is a “connection” between ARCH-type and stochastic

volatility models. A distinguished member of this class is the unobserved ARCH model,

presented by Shephard (1996). The ARCH components in this model are observed with

errors. The form of this model can be written using the following hierarchical structure

of conditional densities:

yt|ft, σ2 ∼ N
¡
ft, σ

2
¢
, (2.10)

ft|ft−1, α, b, f0 ∼ N (0, ht) ,

ht = α+ b · f2t−1,

where y1, ..., yT is a realization of the process, ft is the unobserved ARCH component at

time t, f0 is the initial state or the “history” of the unobserved components and N (·, ·)
is the Normal distribution. For the nonnegativity of the variance ht of the factor the

parameters a and b are restricted to be positive. The additional restriction 0 < b ≤ 1
is placed so that the ARCH component of the model to be covariance stationary (Engle

1982). Note that the unobserved component ft is not measurable with respect to the
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available information at time t, something which characterizes this class of models. The

unconditional and conditional variances of yt are given by V ar (yt) = σ2 + aÁ (1− b)

and V ar (yt|yt−1, a, b) = σ2 + ht. Therefore, the stochastic process yt can be considered

to have an underline variance on which it is added the variability which is caused by the

effect of volatility clustering.

2.5 Multivariate Models

2.5.1 ARCH/GARCH Unconstrained Models

Kraft and Engle (1982) introduce the basic multivariate GARCH(p, q) model

yt|· ∼MNk (0,Σt) , (2.11)

where

Σt =


σ211t σ212t · · · σ21kt
...

...
. . .

...

σ2k1t σ2k2t · · · σ2kkt

 ,

vech(Σt) = vech (C) +

pX
i=1

Aivech
¡
εt−1ε∗t−1

¢
+

qX
j=1

Bjvech (εt−j) .

Here yt = (y1t, ..., ykt)0 is the realization of the k-dimensional stochastic process of time t,

MNk (·, ·) is the k-variate Normal density, vec (·) denotes the column stacking operator
of the lower portion of a symmetric matrix and C,Ai (i = 1, ..., p) and Bj (j = 1, .., q)

are the matrices of the parameters. The above model is heavily parameterized. There is

{k(k + 1)/2}+(p+q) {k(k + 1)/2}2 unknown parameters to be estimated (k = 4 delivers
212 parameters). Moreover it is extremely difficult to state the conditions to ensure that

Σt is always positive definite. For these reasons, many scientists search for plausible
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constraints on the parameters of this model.

2.5.2 ARCH/GARCH Constrained Models

As noted in the previous section, the direct extension of the univariate ARCH/GARCH

models to the multivariate case leads to a very large number of unknown parameters

to be estimated. An attempt to reduce the number of parameters of the multivariate

ARCH/GARCH model produced the diagonal ARCH/GARCH model (Bollerslev, Engle

and Wooldridge 1988). This model sets the matrix Ai and Bi of the model (2.11) to be

diagonal. In detail, the diagonal GARCH(p, q) is written as

yt|· ∼MNk (0,Σt) ,

where

Σt =


σ211t σ212t · · · σ21kt
...

...
. . .

...

σ2k1t σ2k2t · · · σ2kkt

 ,
and

vech(Σt) = C +

pX
i=1

aivech
³
εt−1ε

0
t−1
´
+

qX
j=1

βjvech (εt−j) ,

where ai (i = 1, ..., p) and βj (j = 1, ..., q) is n (n+ 1)Á2 vectors of parameters. More

simply each element of the conditional covariance matrix εt can be written as

σ2klt = Ckl +

pX
i=1

akliεk,t−1εl,t−1 +
qX

j=1

βkljσ
2
kl,t−j.

Note that, and for this model the constraints that is needed such as Σt to be always

positive definite is not an easy task.
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2.5.3 ARCH/GARCHModelsWith Constant Conditional Cor-

relation

A popular constrained ARCH/GARCH model is the constant conditional correlation

model of Bollerslev (1990). Here the correlation among series is constant σ2ijt = ρijσiitσjjt

over time. In detail, the GARCH(p, q) with constant conditional correlation is written

as

yt|· ∼ MNK

³
0,Σ

1/2
t R Σ

1/2
1

´
,

Σt =



σ21t 0 · · · 0 0

0 σ22t · · · 0 0
...

...
. . .

...
...

0 0 · · · σ2k−1t 0

0 0 · · · 0 σ2kt


,

R =



1 ρ12 · · · ρ1(k−1) ρ1k

ρ21 1 · · · ρ2(k−1) ρ2k
...

...
. . .

...
...

ρ(k−1)1 ρ(k−1)2 · · · 1 ρ(k−1)k

ρk1 ρk2 · · · ρk(k−1) 1


,

σ2kt = Ck +

pX
i=1

akiε
2
k,t−1 +

qX
j=1

bkjσ
2
k,t−j,

The restriction of constant correlation corr(yit, yjt|Yt−1) = ρij has been found to be

empirically reasonable (Baillie and Bollerslev, 1990).

Regarding the applications of the above multivariate model see Giovannini and Jorion

(1989), Baillie and Bollerslev (1990), Schwert and Seguin (1990), Kroner and Claessens

(1991), Kroner and Sultan (1991), Ng (1991), Bekaert and Hodrick (1993), Turtle, Buse

and Korkie (1994) and Jeantheau (1998) among others.
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2.5.4 Factor ARCH/GARCH Models

The latent factor ARCH model is proposed by Diebold and Nerlove (1989). Here each

component of the stochastic process is expressed as a linear combination of a few under-

lying processes called factors, and of a noise. In detail, the one-factor model is written

as

yt|λ,ft,Σ ∼ MNk (λ,ft,Σ) ,

ft|ft−1, a, b ∼ N
¡
0, a+ bf2t−1

¢
,

where yt is a k-variate realization of the stochastic process, λ =(λ1, λ2, ..., λk) is the

vector of loadings, a, b are the hyperparameters of the ARCH components and ft is

the factor component. Here f 0ts are unobserved (latent) quantities and they must be

estimated from the data.

King, Sentana andWadhawani (1994) modeled the common factor to follow a GARCH

process. Overall, different factor models have been proposed in the literature, and have

been analyzed by many researches (see, for example, Diebold and Nerlove (1989), Laux

and Ng (1993), Engle, Ng and Rothschild (1990), King, Sentana and Wadhwani (1994),

Demos and Sentana (1996), Fiorentini et al. (2004) among several others),

2.5.5 The Multivariate Stochastic Volatility Model

Based on the approach of Bollerslev (1990) constant correlation ARCH model, Harvey,

Ruiz and Shephard (1994) proposed the analog in stochastic volatility model. The form
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of this multivariate model is given by

yt|Ht, R ∼ MNK

³
0, H

1/2
t RH

1/2
t

´
,

Ht = diag (h1t, ..., hkt) ,

R =



1 ρ12 · · · ρ1(k−1) ρ1k

ρ21 1 · · · ρ2(k−1) ρ2k
...

...
. . .

...
...

ρ(k−1)1 ρ(k−1)2 · · · 1 ρ(k−1)k

ρk1 ρk2 · · · ρk(k−1) 1


,

hit|a, d, hi,t−1, σi ∼ LN
¡
ai + d log (hi,t−1) , σ2i

¢
,

where R is a constant correlation matrix, ht is the log-volatility at time t and ai, di, σ
2
i

for i = 1, 2, ..., k are the unknown hyperparameters of the model.

2.5.6 The Multivariate Factor Stochastic Volatility Model

The idea of Diebold and Nerlove (1989) for the factor ARCH model can be also applied

to the stochastic volatility models. The simplest one-factor stochastic volatility model

puts

yt|λ,ft,Σ ∼ MNK (λft,Σ) ,

ft|ht ∼ N (0, exp (ht)) ,

ht|ht−1, d, σ2n ∼ N
¡
dht−1, σ2n

¢
,

where λ is the k-variate vector of loadings, ft is the latent (common) factor, ht is the log-

volatility of the factor, a, d, σ2n are the parameters of the log-volatilities andΣ is a diagonal

covariance matrix. Moreover the elements of Σ can be driven by independent stochastic

volatility models. Models including in the general framework of factor stochastic volatility

have been studied by Jacquier, Polson and Rossi (1999) and Aguilar and West (2000).
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Chapter 3

The Bayes Framework and MCMC

3.1 Bayes’s Theorem

The framework that is chosen to work with is the Bayesian analysis (Jeffreys 1939,

Bernardo and Smith 1994, O’Hagan 1994). This approach of statistics is totally based

on Bayes theorem (Bayes, 1763):

Theorem 1 Bayes Theorem(continuous random variables)

Let θ and y continuous random variables, then

f (θ|y) = f (y|θ) π (θ)R
θ

f (y|θ)π (θ) dθ .

The application of the above theorem is straightforward in applied Statistics. Let y

the set of the data which we have at hand. The data are assumed to come from a density

f (·|θ) where θ is the vector of parameters of the assumed distribution. The goal is to
investigate the distribution of parameters θ given the y, i.e. given the data at hand.

Suppose that π (θ) is the a priori information about θ then the density of θ given the
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data (a posteriori density) is extracted via Bayes theorem

f (θ|y) =
f (y|θ)π (θ)R

θ
f (y|θ)π (θ) dθ (3.1)

or

f (θ|y) ∝ f (y|θ)π (θ) ,

where ∝ means equal up to a constant. For more information about the Bayesian Statis-
tics see for example, Bernardo and Smith (1994), Jeffreys (1939), Pole, West and Harrison

(1994).

In many cases, there is no prior information about the parameters of interest. In such

cases, it is common to use as a priori distributions for these parameters, the distributions

which are non informative. Commonly, non-informative priors based on Jeffreys priors

for location and scale are used. For example: if θ ∈ R then [θ] ∝ 1 and if θ ∈ R+ then

[θ] ∝ 1
θ
. Another approach is to use flat distributions and specifically N (0, σ2) , where σ2

is considered a large number.

The challenging part in Bayesian analysis is to calculate the integral in the denomi-

nator of (3.1). In most cases, this cannot be done analytically and other techniques must

be used. The last two decades Markov Chain Monte Carlo (MCMC) techniques are used

to overcome this problem.

3.2 The Computational Difficulty of Bayesian Anal-

ysis

The Bayesian approach presents some difficulties regarding the computational part. To

be more specific, the case of the stochastic volatility model is examined.

Let the univariate stochastic volatility model (Jacquier, Polson and Rossi, 1994)
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yt|ht ∼ N(0, ht)

ht|a, d, σ2, h0 ∼ LN(a+ d log ht−1, σ2)

where yt is the stochastic process at time t, a, d, σ2, h0 are the hyperparameters of the

model and ht is the volatilities.

Suppose that we have at hand T realizations of the yt, therefore y = (y1, ..., yT )
0.

Our aim is to investigate the distribution of the hyperparameters and the volatilities

h =(h0, h1, ..., hT ) of the stochastic volatility model. For this reason, we apply the Bayes

theorem as follows:

f
¡
a, d, σ2,h|y¢ = f (y|a, d, σ2,h)π (a, d, σ2, h0)R

Θ
f (y|a, d, σ2,h)π (a, d, σ2, h0) dΘ (3.2)

where Θ = (a, d, σ2, h0,h) is the parameter space. The formula (3.2) can be written as

f
¡
a, d, σ2,h|y¢ = c (Θ) f

¡
y|a, d, σ2,h¢π ¡a, d, σ2, h0¢

∝ f
¡
y|a, d, σ2,h¢π ¡a, d, σ2, h0¢

where

c (Θ) =

½Z
Θ

f
¡
y|a, d, σ2,h¢π ¡a, d, σ2, h0¢ dΘ¾−1 .

Note that c (Θ) is the normalizing constant of the joint posterior distribution of parame-

ters of interest. To calculate the constant c (Θ) requires a (T +4) dimensional (numeric)

integration (4 hyperparameters and T volatilities).

The marginal posterior distribution for a particular parameter of the model, say d, is

given from the solution of the integral bellow

f (d|y) = c (Θ)

Z Z
...

Z
f
¡
y|a, d, σ2,h¢π ¡a, d, σ2, h0¢ dadσ2dh0...dhT ,
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which means that apart from the (T + 4) dimensional integration for calculating c (Θ)

we need a (T + 3)-dimensional integration to marginalize out the rest hyperparameters

and volatilities.

Moreover if we want to find out the posterior mean for the parameter a

E (a|y) =
Z
a

af (a|y) da ,

one more integration is required. Additionally, more high order integrations are needed

in order to calculate other characteristics of the posterior distribution of a specific pa-

rameter, say V ar (a|y) , Kurt (a|y) or Cov (a|y) .
From the above it becomes obvious that Bayesian analysis requires high dimensional

integration; an approach that many times is not possible to be followed as for example

in the case of stochastic volatility model.

Tierney and Kadane (1984) introduce an asymptotic Laplace approximation to cal-

culate the expectation of a function of a parameter of interest, which still involves high

dimensional functional maximization and the calculation of the Hessian matrix for each

specific approximation. Furthermore, Achcar and Smith (1990) and Hills and Smith

(1992) show that these approximations can be very sensitive to the parameterization of

the parameters. Other approach to overcome the computational difficulty of the Bayes

Analysis is via sampling methods (see Stewart, 1983 and 1987; Steward and Davis, 1986;

Geweke, 1988 and 1989b).

3.3 Sampling Based Methods

Smith (1991) observed that there is a duality between a distribution and a sample which

is generated from this distribution. In detail, if there is a sample that is generated from

a specific distribution its distribution can be approximately reconstructed along with its

features. This could be a fair solution to the computational problem of the Bayesian

Statistics.
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Suppose that we have a random sample of size n, θ∗1, ...,θ
∗
k, ...θ

∗
n from the joint pos-

terior distribution of the parameters of the stochastic volatility model, where θ∗k =

(a∗k, d
∗
k, σ

2∗
k ,h

∗
k). Most of the features that characterize the distribution of interest can

be easily calculated from this random sample . More specifically, the posterior mean of

the parameter a is approximately

E (a|y) ∼=
nX
i=1

a∗i
n
.

The posterior covariance between a and d is approximately

Cov (a, d|y) ∼=
nX
i=1

(a∗i − E (a|y)) (d∗i − E (d|y))
n

.

Moreover, the marginal distribution of any parameter can be estimated via non-parametric

density estimation, say Kernel estimator

f (d|y) = 1

nh

nX
i=1

K

µ
a− a∗i
h

¶
,

where h is the window width, and K (·) is the Kernel function which satisfiesR
K(x)dx = 1. Moreover, a simple estimation of the posterior density could be given by

the histogram of the random sample of the parameter a.

Therefore, by employing a random sample, most of the features of the posterior

density can be approximately estimated. From the above, emerges a question that has

to be answered: “Is it possible to sample from the joint posterior density?”, especially if

this posterior density is known up to a constant.

In case where it is possible to sample from the posterior density of the parameters of

interest, the computational difficulty of Bayesian analysis is eliminated. Thus, the issue is

whether it is possible to sample from a density. The answer to this issue can be given by

Markov chain Monte Carlo techniques, such as Gibbs sampler and Metropolis-Hastings

algorithm. An explicit description of these simulation strategies is given in Smith and
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Roberts (1993), Gilks et al. (1995), Dellaportas and Roberts (2003).

3.3.1 The Gibbs Sampler

The Gibbs sampler is a Markovian technique that enables the researcher to sample from

multidimensional density functions.

Suppose that we want to take a sample from a posterior density f (θ|y) which is
known up to a constant. In this case, θ denotes the vector of k parameters of in-

terest and y denotes the data at hand. Let f
³
θi|θ/i,y

´
denotes the full conditional

distribution of parameter θi and θ/i is the vector of the parameters apart from θi, i.e.

θ/i=(θ1, θ2, ..., θi−1, θi+1, ..., θk) .

The basic idea behind Gibbs sampler is relying on the fact that the full conditional

distributions f
³
θi|θ/i,y

´
, for i = 1, ..., k uniquely determine the joint posterior density

as originally observed by Besag (1974). Based on this, Gelfand and Smith (1990) for-

mulated the Gibbs sampler. Specifically, given an arbitrary set of starting values for the

parameters of the model under consideration, θ0=
¡
θ01, θ

0
2, ..., θ

0
k

¢
the following algorithm

can be implemented

First iteration

draw θ11 from f(θ1|y, θ02, θ03, ..., θ0k)
draw θ12 from f(θ2|y, θ11, θ03, ..., θ0k)
...

draw θ1k from f(θk|y, θ11, θ12, ..., θ1k−1)
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Second iteration

draw θ21 from f(θ1|y, θ12, θ13, ..., θ1k)
draw θ22 from f(θ2|y, θ21, θ13, ..., θ1k)
...

draw θ2k from f(θk|y, θ21, θ22, ..., θ2k−1)

i-th iteration

draw θi1 from f(θ1|y, θi−12 , θi−13 , ..., θi−1k )

draw θi2 from f(θ2|y, θi1, θi−13 , ..., θi−1k )

...

draw θik from f(θk|y, θi1, θi2, ..., θik−1).

Having the above iterative algorithm repeated for t times, the transition probability of

going from θt=
¡
θt1, θ

t
2, ..., θ

t
k

¢
to θt+1=

¡
θt+11 , θt+12 , ..., θt+1k

¢
is given by

π
¡
θt,θt+1

¢
=

kY
i=1

f
¡
θt+1i |y,©θtj, j > i

ª
,
©
θt+1j , j < i

ª¢
.

As Geman and Geman (1984) proved that under mild conditions

θt=
¡
θt1, θ

t
2, ..., θ

t
k

¢ L→ θ

as t goes to infinity. Note that, Gibbs sampler is a Markovian chain since the vector

θt=(θr1, θ
r
2, ..., θ

r
k) depends only on the position of the previous vector

θr−1=
¡
θr−11 , θr−12 , ..., θr−1k

¢
.

The simplicity of implementation of the aforementioned algorithm, has made this

approach very popular among Bayesians, which explains the existence of many examples
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found on related literature that are based on this method. For more information about

the Gibbs Sampler and its applications see Besag and Green (1993), Casela and George

(1992), Dellaportas and Smith (1993), Gelfand and Smith (1990), Gelfand et al. (1990),

Geman and Geman (1984), Roberts and Sahu (1997), Gilks et al. (1995), Spiegalhalter

et al. (1995a, 1995b).

A critical point to this sampling scheme, is the requirement of having all the full con-

ditional densities tractable to sampling, something that is not very common in practice.

In cases where a full conditional density cannot be sampled, then the Metropolis-Hastings

algorithm can offer some solutions.

3.3.2 The Metropolis-Hastings Algorithm

In many applications, there are no specific algorithms to sample from the conditional

densities resulting from the Gibbs sampler. Still, there are cases where a sample from all

the parameters or a block of parameters must be drawn at once, something that might

be proven difficult to be directly performed. In such cases an iterative sampling scheme,

Metropolis-Hastings algorithm (Metropolis et al., 1953 & Hastings, 1970), can be used

as an alternative for sampling from the distribution of interest.

Suppose that a sample must be retrieved from a density f (θ|y) which is known
up to a constant. Assume that in order to construct the Markov chain, a candidate-

generating density is q
¡
θold,θnew

¢
where

R
q
¡
θold,θnew

¢
dθnew = 1 (Metropolis et al.,

1953 & Hastings, 1970). This density generates values θnew when a process is at the

point θold. Of course, this candidate density must follow some conditions, such as the

reversibility condition for all q
¡
θold,θnew

¢
. In most cases, this condition is not satisfied.

Therefore, for some pairs
¡
θold,θnew

¢
, the following might occur:

f
¡
θold|y¢ q ¡θold,θnew¢ > f (θnew|y) q ¡θold,θnew¢ .

In these cases, the process moves from θold to θnew too often, while the opposite
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(from θnew to θold) happens very rarely. To repair this, a probability a(θold,θnew) < 1 is

introduced , which is called probability of move, that corrects the condition of reversibility

and reduces the number of moves from θold to θnew.

Therefore, if p(θold,θnew) is the transition matrix of the chain (when the states are

discrete) or the transition kernel (when the states are continuous),

f
¡
θold|y¢ p(θold,θnew) = f (θnew|y) p(θnew,θold),

f
¡
θold|y¢ q ¡θold,θnew¢ · a(θold,θnew) > f (θnew|y) q ¡θnew,θold¢ · a(θnew,θold).

As it has been already stated, the movement from θnew to θold is not occurring often

enough, therefore a(θnew,θold) must be defined to be as large as possible. Still, having

a(θnew,θold) being a probability, it must be set as a(θnew,θold) = 1; then

f
¡
θold|y¢ q ¡θold,θnew¢ · a(θold,θnew) = f (θnew|y) q ¡θnew,θold¢ ,

and the probability of move is produced by the form

a(θold,θnew) = min

"
f (θnew|y) q ¡θnew,θold¢
f
¡
θold|y¢ q ¡θold,θnew¢ , 1

#
.

if f
¡
θold|y¢ q ¡θold,θnew¢ > 0 or 1 otherwise.
Therefore, the Metropolis-Hasting Algorithm takes the following form:

• Step 1: Generate z from q(θold, .) and u from U (0, 1) , where U (·, ·) denotes the
uniform distribution.

• Step 2: Let θnew = z if u ≤ a(θold, z); otherwise let θnew = θold.

• Repeat the steps 1 and 2 n times in order to take a sample of size n.

An introduction to the Metropolis-Hastings is contained in Chib and Greenberg

(1995a).
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A crucial detail in application of Metropolis-Hastings algorithm is the choice of the

candidate distribution. There are many options of candidate (proposal) densities and

those will be summarized below:

α) a(θold,θnew) = a(θnew,θold)

This choice is called the random walk chain because the candidate value θnew is drawn

according to the process θnew = θold + z where the increment random variable z ∼ q1.

Possible choices for q1 include the multivariate normal or the multivariate-t distribution.

β) a(θold,θnew) = a(θnew)

This choice is called independent chain. Possible choices is the multivariate normal

distribution or some other densities and it is required to specify the location of the

generating density in addition to the spread.

γ) Other choices

There is a wide set of possible candidate densities. For more information see, Chib and

Greenberg (1995b), Tierney (1994) and Hastings (1970). Furthermore, other updating

schemes of the Metropolis-Hastings algorithm are discussed in Marinari and Parisi (1992),

Geyer and Thompson (1995), Mira (1999), and Tierney and Mira (1999).

Note that, in the use Metropolis-Hastings algorithm if the candidate distribution is a

symmetric1 distribution such as Normal then the probability of move is

a(θold,θnew) = min

"
f (θnew|y)
f
¡
θold|y¢ , 1

#
.

The Metropolis-Hastings algorithm can be applied as itself or with combination with the

Gibbs sampler. In detail, if in a Gibbs scheme, the full conditional densities of a posterior

density are not of known forms then the Metropolis-Hastings must be applied in order

to sample from them. This last remark is very crucial since this combination of the two

1Symmetric with respect to its arguments, q
³
θnew,θold

´
= q

³
θold,θnew

´
.
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algorithms constructs a powerful tool in order to exploit the properties of the posterior

distribution (Chib and Greenberg, 1995a).

On the other hand, the Metropolis-Hastings algorithm suffers from a serious drawback

when compared to the Gibbs sampler, which is the necessity of tuning to the spread of

the proposal density (Chib and Greenberg 1995a), in order to succeed efficient sampling.

3.3.3 Example

For the case of the stochastic volatility model the MCMC algorithm that can be used in

order to sample from the posterior density of the parameters of interest is the following (

Jacquier, Polson and Rossi, 1994; Giakoumatos 1997). Using non-informative priors for

the hyperparameter of the model the joint posterior density up to a constant is

f (h,θ|y) ∝ exp

−
TP
t=1

ht

2

 exp
"
−1
2

TX
t=1

y2t exp (−ht)
#

1¡
σ2η
¢T
2
+1
exp

"
− 1

2σ2h

TX
t=1

(ht − a− dht−1)
2

#
,

where θ is the vector of the hyperparameters
¡
a, d, σ2η

¢0
and h =(h0, h1, ..., hT ) is the

vector of log-volatilities.

The full conditional densities are of the form

• a|· ∼ Normal
³P

ht−d·P ht−1
T

,
σ2η
T

´
, where a|· means the parameter a given the rest

of the parameters and the data.

• d|· ∼ Normal
³P

ht·ht−1−a·
P

ht−1P
h2t−1

,
σ2ηP
h2t−1

´
.

• σ2η|· ∼ IG

µ
T
2
, 1
2
·

TP
t=1

(ht − a− d · ht−1)2
¶
, where IG (·, ·) is the inverse gamma

distribution.
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• h0|· ∼ Normal
³
h1−a
d

,
σ2η
d2

´
.

• f (ht|·) ∝ exp [−0.5 (ht + y2t exp (−ht))] exp
£− 1

2·s2 (ht −mt)
2¤ , for t = 1, ...T. Here

mt =
[a·(1−d)+d·(ht+1+ht−1)]

(1+d2)
and s2 =

σ2η
(1+d)

.

The above full conditional densities of the log-volatilities, do not have trivial forms.

They are consisted of a Normal term and a term that is very unusual in common practice.

In order to sample from these full conditional densities, the Metropolis-Hasting al-

gorithm can be applied. Giakoumatos (1997) used the dependent Metropolis-Hastings

algorithm with Normal proposal density. Thus, the proposed sampling point for the i−th
value of a specific log-volatility, say ht is sampled from

h
(i)
t ∼ Normal

³
h
(i−1)
t , c · σ2η

´
and the probability of acceptance is

a
¡
hi−1t → hit

¢
=

exp
h
− 1
2·s2 (h

i
t −mt)

2
i

exp
h
− 1
2·s2
¡
hi−1t −mt

¢2i .
Chib and Greenberg (1994) proposed that the constant c must be chosen in such a way

that the acceptance probability will be about 50%. Still, there is a major scientific debate

concerning the proper value of the acceptance probability. In this algorithm Giakoumatos

(1997) proposed the constant c to be equal to 1
(1+d2)

which gives probability of acceptance

approximately 65%.

3.3.4 The Auxiliary Variable Sampler

The basic idea of the auxiliary variable sampler can be traced back to the papers of

Swendsen and Wang (1987), Edwards and Sokal (1988), Besag and Green (1993), Damien

and Walker (1996), Damien et al. (1999), Higdon (1998) and Neal (2003). All the

above authors pointed out that if the parameter space of a posterior density is properly
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increased by including extra latent variables, this could make the resulting posterior

density more tractable by sampling methods. In particular, Damien et al. (1999) gave

specific guidelines to cope with a series of popular statistical models. As an initial

approach to this method the following examples display the usefulness and the easiness

of the auxiliary variable sampler.

Example 2 Suppose that we want to take sample from f (θ) ∝ π (θ) ·
NQ
i=1

li (θ) , and

assume that this is not possible by employing standard methods. Applying the auxiliary

variable sampler the set of latent variables u = (u1, ..., uN) can be introduced, where ui ∈
(0,∞) such that the joint density of θ and u to become f (θ,u) ∝ π (θ)

Q
i

I (ui ≤ li (θ)) ,

where I (·) is the indicator function. Note that, the marginal density of θ is f(θ). Now it
is easy to sample from f (θ) using the Gibbs sampler. First we sample u from their full

conditional densities which are uniforms i.e. ui ∼ U (0, li (θ)) and then we sample from

the full conditional density of θ which is π (θ) IA; A = {θ : li (θ) ≥ ui, i = 1...N}.

Example 3 Suppose that we want to take sample from f (θ) ≡ N (m, τ) , where τ denotes

the accuracy. In this case the latent variables u ∈ (0,∞) can be introduced resulting the
following joint density of θ and u

f (θ, u) ∝ √u exp (−0.5ut) I ¡u ≥ (θ −m)2
¢
. (3.3)

Note that if the latent variable u is integrated out from (3.3) , then the marginal density

of θ becomes the density of interest. Thus, a sample from f(θ, u) can be taken using the

following Gibbs steps:

1. θ|u ∼ U (m−√u,m−√u) .

2. u|θ ∼ Gamma (0.5, 0.5τ) I ¡u ≥ (θ −m)2
¢
.

Moreover if the full conditional density of u|θ is marginalized with respect to θ, a

sample from f(θ, u) can be drawn using the following steps:
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1. θ|u ∼ U (m−√u,m−√u) .

2. u|θ ∼ Gamma ¡3
2
, τ
2

¢
.

A detailed presentation of the auxiliary variable sampler will be provided on chapter

5.
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Chapter 4

A New Convergence Diagnostic

Based on Subsampling

4.1 Introduction

Due to the computational difficulty of Bayesian Statistical analysis, statisticians nowa-

days routinely use Markov Chain Monte Carlo (MCMC) methods to simulate from com-

plex, non standard posterior distributions; see, for example Tierney (1994). As noted

in previous sections, the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith,

1990). the Metropolis-Hastings algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller

and Teller, 1953; Hastings, 1970) and the auxiliary variable sampler (Damien et al., 1999;

and Neal, 2003) are the most popular methods for the analysis of complex statistical

models.

The main problem that turns up, using such methods, is to gauge when convergence

is achieved; that is, to assess at what point the Markov chain “gets in” the target distri-

bution, and to figure out how many points will have to be taken from this distribution in

order to estimate, with the desired accuracy, the parameters of interest. The first part

of the problem is that of determining the length of the required “burn-in” period or the
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point in which the Markov chain has “forgotten” its starting point; observations within

an initial transient phase are discarded, in order to reduce the bias caused by the effect

of starting values. The second part is that of determining the number of sample points

which “adequately” represent the posterior distribution and on which inference will be

based. We will be using the expression “the Markov chain gets in the target distribution”

meaning that the Markov chain has effectively converged to its asymptotic distribution.

In order to solve the problem of convergence, a number of different diagnostics have

been proposed in the literature. From a theoretical point of view, there is an attempt

to predetermine the number of iterations that will ensure convergence; see, for example,

Polson (1996), Rosenthal (1993), Roberts and Sahu (1997) and Schervish and Carlin

(1992). Due to the difficulty of this approach in practice, almost all of the applied works

are based on the output produced by running Markov Chain Monte Carlo algorithms.

Some of the proposed methods try to assess convergence, while others attempt to

“measure” the performance of any particular sampler. The choice of diagnostic depends

on the problem at hand. The theoretical background, the assumptions, the assessment

of convergence of the joint or the marginal density of an MCMC output, the number of

chains that are needed, the range of the samplers to which the diagnostic is applied, the

computational expense and the interpretability are some of the criteria for the choice

of the diagnostic. These convergence diagnostics are described in the review papers of

Cowles and Carlin (1996) Robert and Mengersen (1999) and Brooks and Roberts (1999).

In the next sections some of the most popular convergence tests (included in CODA

software (Best and Cowles, 1995)) are presented and a new convergence test is pro-

posed (Giakoumatos, Vrontos, Delaportas and Politis, 1999) based on the subsampling

methodology.

32



4.2 CODA tests

Most of the MCMC users based their decision that their Markov chains converge to

the distribution of interest to the results of the convergence diagnostics that included in

CODA software (Best and Cowles, 1995). These tests are

1 Geweke test

2 Gelman and Rubin test

3 Raftery and Lewis test

4 Heidelberger and Welch test

Geweke (1992) proposed a test that regards the output of the MCMC as a time

series and uses methods from spectral analysis to estimate the asymptotic variance of

the MCMC sampler. Let n the umber of iterations of the MCMC sampler, q (·) the
function that we want to estimate from the MCMC output. Assume that the spectral

density Sq (ω) exists and has not discontinuities at the frequency 0. If these assumptions

are satisfied then for the estimation

qn =

nP
i=1

q
³
θ(i)
´

n

of E (q (θ)) the asymptotic variance is Sq(0)
n

, where θ(i) for i = 1, ..., n is the output of

the sampler. Using this estimation of the variance we can test if the difference of mean

q (θ)An , based on the first nA iterations and q (θ)Bn , based on the last nB iterations is

statistically significant. Geweke suggests using nA = 0.1n and nB = 0.5n.

The test of Gelman and Rubin (1992) that was included in the CODA software is

applied in the output of two or more independent chains beginning from different starting

points. Assume that m independent chains are implemented for 2n iterations. Based on

the last n iterations Gelman and Rubin method estimate the target distribution of each

scalar of interest as a conservative Student− t distribution.. Convergence is assumed if

33



the ”shrink factor” for each scalar is near to 1. The ”shrink factor” is estimated as

pbR =sµn− 1
n

+
m+ 1

mn

B

W

¶
df

df − 2 ,

where B is the variance between means from the m chains, W is the average of the m

within-chain variances and df is the degrees of freedom of the approximating t density.

Raftery and Lewis’s (1992) test is based on two-state Markov chain theory. A mini-

mum number of iterations, say nmin, is needed to obtain the desired precision of estima-

tion if the samples are independent. For any specific quantile q of the posterior density,

and desired accuracy the program reports the total number of iterations that algorithms

should be run and how many of the beginning iterations should be discarded. More-

over, the test indicates k where only every kth iterations should be keep in order to have

independent sample.

Heidelberger and Welch (1983) proposed a procedure for generating a confidence

interval of prespecified width for the mean of the parameters of interest. Let n the

number of iterations that MCMC has been run. Let n1 = 0.1n an initial number of

iterations. Using the rest iterations a spectral density estimation of S (0) is computed.

Then a Schrunben’s stationarity test on the entire run is performed. If the null hypothesis

is rejected the first n1 iterations are discarded and the test is repeated until the null

hypothesis does not rejected or the half of the n iterations have been discarded.

4.3 An MCMC Convergence Diagnostic using Sub-

sampling

4.3.1 Introduction

In this section, a new diagnostic will be proposed (Giakoumatos, Vrontos, Dellaportas

and Politis, 1999) which assesses the convergence of both marginal and joint posterior
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densities. It can be applied to any MCMC sampler and uses the output from a single

chain to gauge convergence. Generalization for multiple chains is straightforward, and

this diagnostic can be very useful when there is suspicion of very influential starting

points; see Gelman (1996). This test can be used to detect MCMC convergence in great

generality and does not need to be combined with other methods in order to be effectively

implemented. The subsampling method for statistical inference as developed by Politis

and Romano (1994) and Politis, Romano and Wolf (1997) is used. The diagnostic is

based on obtaining (via subsampling) (1 − α)100% confidence regions for the posterior

mean and for the 90th percentile of the first marginal distribution of the Markov chain

at hand; the assessment of convergence can be done through looking at a set of graphs.

An alternative diagnostic is also proposed that uses the asymptotic normal distribution

together with a subsampling estimate of the asymptotic variance-covariance matrix. A

recent approach, which also looks with different perspective at the use of confidence

intervals as a means of convergence diagnosis, is given by Brooks and Gelman (1998).

The authors generalized the method of Gelman and Rubin (1992) and they used the

(squared) ratio of the lengths of the empirical estimated confidence intervals for the

parameters of interest as an alternative interpretation of the R̂ diagnostic (Gelman and

Rubin, 1992), which is defined as the ratio of the between and within variances of the

MCMC sequences. This alternative calculation of R̂ is simpler than the original ratio of

variances and is free from the assumption of normality.

4.3.2 The Subsampling Methodology

In this section the basic ideas of subsampling methodology for time series (see Politis and

Romano, 1994 and Politis, Romano andWolf, 1997) are reviewed. Let
³
θ(1),θ(2), ...,θ(N)

´
be an observed stretch of a multivariate time series {θ(s), s = 1, 2, ...}; each θ(s) is as-
sumed to be a (p× 1) vector. The time series is also assumed to be strong mixing, and
asymptotically stationary.

The assumption of strong mixing is an assumption of “asymptotic independence”:
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for any positive integers i and n, the two sets of random variables
³
θ(i),θ(i+1), ...,θ(i+n)

´
and

³
θ(i+n+k),θ(i+n+k+1), ..., θ(i+2n+k)

´
should be approximately independent if k is large

enough; see Rosenblatt (1956), Doukhan (1994) or Politis, Romano and Wolf (1997)

for a precise definition. Similarly, the notion of asymptotic stationarity means that the

sequence
³
θ(k),θ(k+1), ...

´
is approximately stationary (in the strict sense — see Brockwell

and Davis, 1991) if k is large enough.

The basic idea of subsampling is to approximate the sampling distribution of a statistic

based on the values of the same statistic recomputed over smaller subsets of the data

that retain the dependence structure of the observations. If we are willing to consider

subsets of size b(< N), where b is a positive integer that in general may depend on N ,

then we are led to consider the B = N − b + 1 “blocks” of consecutive observations of

the type
³
θ(i),θ(i+1), ..., θ(i+b−1)

´
, for i = 1, ..., B.

Let TN be a statistic of interest that is a function of the data sequence
³
θ(1),θ(2), ..., θ(N)

´
.

The statistic TN is generally a vector (say q-dimensional), and is employed as an esti-

mator of an unknown parameter θ. In general, θ can be a parameter of the whole

(infinite-dimensional) joint distribution of {θ(s), s = 1, 2, ...}; however, in the MCMC
case considered in the next sections, θ will almost always be a parameter of the invariant

distribution of the Markov chain, i.e., the “asymptotic” first marginal of the sequence

{θ(s), s = 1, 2, ...}.
It is assumed that TN is consistent for θ as the sample size N → ∞. Specifically,

it is assumed that the statistic TN , suitably centered and normalized, possesses a non-

degenerate large-sample distribution. To be more precise, let {τn, n = 1, 2, ...} be an
increasing sequence that diverges to ∞ as n→∞, let || · || denote a norm on space Rq,

and let JN (x) = Prob [τN ||TN − θ|| ≤ x]. The assumption required is that there exists

some nondegenerate continuous distribution function J(·) such that

JN (x)→ J(x) (4.1)
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for all x as N →∞.
Let Ti,b be the statistic of interest computed from block

³
θ(i),θ(i+1), ..., θ(i+b−1)

´
,

with all other data temporarily ignored, and construct an “empirical” distribution of the

“subsample values” {Ti,b, i = 1, ..., B} by

LN (x) =
1

B
·

BX
i=1

1 {τ b||Ti,b − TN || 6 x} . (4.2)

If the series {θ(s), s = 1, 2, ...} is strong mixing and asymptotically stationary, and
if the statistic possesses a nondegenerate large-sample distribution (i.e., equation (4.1)

holds), then LN (·) is a consistent estimator of the (generally unknown) limit distribution
J(·), provided b is chosen in a way that: b → ∞ as N → ∞, but b/N → 0 and

τ b/τN → 0; see Politis, Romano and Wolf (1997) . Perhaps more important is that

consistent estimation of the quantiles of J(·) can be achieved by looking at the quantiles
of LN (·); in other words, for any t ∈ (0, 1),

L−1N (t)→ J−1(t) (4.3)

in probability as N → ∞, where L−1N (t) ≡ inf{x : LN(x) ≥ t} and J−1(t) = inf{x :
J(x) ≥ t} are the t quantiles of LN (·) and J(·) respectively.
Using the quantiles of LN (·) we can now construct confidence regions for θ with a

prescribed coverage level (to be attained in large samples). Relation (4.3) implies that the

set
©
θ : τN ||TN − θ|| ≤ L−1N (1− α)

ª
is a confidence region for θ with asymptotic coverage

probability equal to the nominal 1− α.

Note that our choice of norm || · || will dictate the shape of those confidence regions.
If || · || is the Euclidean norm, then the confidence regions for θ will be spheres centered
at TN . Notably, the choice of sup-norm for || · || (i.e., the l∞ norm which is nothing other
than the maximum absolute coordinatewise deviation) results in confidence regions for

θ that have the shape of hypercubes with edges that are perpendicular to the axis; the

37



sup-norm will be our choice in what follows as confidence regions that are hypercubes

have the useful alternative interpretation as confidence intervals for the coordinates of θ

with simultaneous coverage equal to the coverage level of the whole confidence region.

Remark 2.1. If the variances of different coordinates of the multivariate statistic

TN are of different orders of magnitude it may be inefficient to construct a hypercube

for a confidence region for µ; rather, a “hyper-parallelepiped” should be constructed

instead. To achieve this, the subsampling methodology must be applied to a “studen-

tized” version of our statistic TN as discussed in Politis and Romano (1994). In other

words, a new “studentized” multivariate statistic T̃N is defined with the property that

the coordinates of T̃N have all approximately equal variances; for example, we can define

T̃
(k)
N = T

(k)
N /Ŝ

T
(k)
N
, where Ŝ2

T
(k)
N

is a consistent estimate of the variance of T (k)N , and thus

ensure that all coordinates of T̃N have approximately variance equal to one. Notably,

Ŝ2
T
(k)
N

may even be a subsampling estimate of variance so that an “iterated” subsampling

takes effect. However, for practical purposes, even a rough preliminary variance estimate

can be used in this type of studentization with good ensuing results.

4.3.3 The MCMC Subsampling Diagnostic

In this section, the proposed method for assessing convergence of the MCMC output is

presented. Let
³
θ(1),θ(2), ...,θ(N)

´
be the multivariate output of an MCMC simulation;

as before, each θ(s) is assumed to be a (p× 1) vector with kth coordinate denoted by

θ
(s)
k .

Notably, both assumptions required for subsampling to work (i.e., strong mixing and

asymptotic stationarity) hold true in the MCMC case that interests us where the sequence

{θ(s), s = 1, 2, ...} is a Markov chain that possesses a unique invariant (i.e., stationary)
distribution but the starting value θ(1) may follow a different distribution; see e.g. Meyn

and Tweedie (1993).

Let θN = N−1PN
i=1 θ

(i) denote the sample mean of the observed sequence³
θ(1),θ(2), ..., θ(N)

´
; θN is of course a (p× 1) vector as well, and its kth coordinate will
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be denoted by θN,k. For t ∈ (0, 1), let qtN be a (p× 1) vector with kth coordinate denoted
by qtN,k, where q

t
N,k is the empirical t-quantile of the kth coordinate data sequence³

θ
(1)
k , θ

(2)
k , ..., θ

(N)
k

´
; in other words, if

³
θ
∗(1)
k ≤ θ

∗(2)
k ≤ ... ≤ θ

∗(N)
k

´
are the order statistics

of the kth coordinate data sequence
³
θ
(1)
k , θ

(2)
k , ..., θ

(N)
k

´
, then qtN.k = θ

∗(btN+1c)
k , where b.c

is the integer part.

Using the subsampling methodology and choosing for our statistic TN either θN or

qtN (with some choice of t that is of interest, e.g. t = 0.90), we can construct confidence

regions for the mean and the t quantile of the “asymptotic” first marginal, i.e., the unique

invariant distribution of the Markov chain {θ(s), s = 1, 2, ...}. Note that in either case¡
θN or qtN

¢
we have in general that τN = N1/2, i.e.,

√
N-convergent statistics. Thus, we

can choose the block size b proportional to Nγ (for some constant γ ∈ (0, 1)), and thus
ensure that the conditions for (4.3) —on which the construction of confidence regions is

based— are fulfilled.

As mentioned before, the sup-norm is recommended for use, i.e., kTNk = sup
k=1,...,q

|TN,k|,
where TN,k is the kth coordinate of vector TN ; therefore, the confidence regions are hy-

percubes in Rq. Note also that in both cases
¡
θN and qtN

¢
, the “observation” dimension

p coincides with the “parameter” dimension q.

Since the confidence regions are hypercubes in Rq, we can define the “range” of such

a confidence region as the qth root of its volume. The proposed diagnostic can now be

viewed as a consequence of the following fact:

• The “range” of a (1−α)100% confidence region for either the mean or the t quantile
of the “asymptotic” first marginal is (asymptotically) proportional to 1/

√
N .

Based on the above fact, our diagnostic can be formulated as follows:

(A) Estimation of “burn-in” time. As the simulation is running and N increases,

construct (1− α)100% confidence regions for the t quantile based on different (in-

creasing) values of N ; we used α = 0.05 and t = 0.90 but other choices are possible

as well. Now plot the “range” of the confidence region versus 1/
√
N . We would
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estimate the “burn-in” time to be N∗ if the plot of “range” versus 1/
√
N is ap-

proximately linear for N > N∗. Linearity can be checked by visual inspection of

the plot, but we also recommend to use a plot of the coefficient of determination

of a weighted linear regression between the dependent variable “range” and 1/
√
N .

Having estimated the “burn-in” time to be N∗, observations
³
θ
(1)
k , θ

(2)
k , ..., θ

(N∗)
k

´
are discarded from the simulation as they could introduce undesired bias.

(B) Figuring out when to stop the simulation. Again as the simulation is running

and N increases, construct (1 − α)100% confidence regions for the mean µ of the

“asymptotic” first marginal of the Markov chain
n
θ(s)
o
. Since the main objective

of the simulation is to estimate µ by Monte Carlo, and since the error in this

estimation can be quantified by the range of a (1 − α)100% confidence region for

µ, we would then propose to stop the MCMC simulation when the range of this

(1− α)100% confidence region (with α = 0.05, say) is appropriately small, smaller

than some prespecified absolute or relative measure of accuracy; for example, we

could stop when the range becomes smaller than 0.001 (say), thus obeying an

absolute measure, or when it is smaller than 0.001
°°θN°° which is then a relative

measure (relative to ||µ|| which is estimated by °°θN°°).
The proposed diagnostic is simple and easy to use, and has the significant advantage

of being valid in asymptotically stationary settings such as the MCMC case of interest;

see e.g. Yue and Chan (1996). Notably, other diagnostics (e.g. Geweke, 1992) are shown

to be valid only under the assumption of stationarity, thus neglecting the fact that the

MCMC output is not exactly stationary.

Remark 3.1. The reason why the t quantile (with a large t, say t = 0.90) is considered

in part A of the diagnostic as opposed to a similar graphical plot of the confidence range

of other statistics (e.g. the sample mean) is based on the idea that a stabilization of

estimates of the invariant distribution of the Markov chain (especially in the tails) is a

reliable indicator of the target distribution having been achieved.
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Remark 3.2. Other statistics are also possible even in part B of the diagnostic. For

example, in a simulated annealing setting where the posterior mode is the objective, our

statistic TN could have as kth coordinate the sample mode of the kth coordinate data

sequence
³
θ
(1)
k , θ

(2)
k , ..., θ

(N)
k

´
; for concreteness however, we will focus in the sequel on the

sample mean and t quantile of an MCMC output.

Given the burn-in sample of the MCMC chain and the sample size needed to esti-

mate the parameters of interest with the desired accuracy, we can estimate the variance

covariance matrix of these parameters using the whole sample (excluding the burn-in)

with a subsampling estimate. For example, we could use the blocked sample variance as

introduced by Politis and Romano (1993) and its formula is presented in the next section.

This treatment could be beneficial as indicated by MacEachern and Berliner (1994).

4.3.4 An Alternative ‘Hybrid’ Diagnostic

In cases where the asymptotic distribution of our statistic TN is known to be normal, then

a ‘hybrid’ method that combines subsampling with the information regarding asymptotic

normality may be used. Note that, the sample mean and sample 0.90 quantile, which are

chosen as statistics of interest, are both asymptotically normal under standard regularity

conditions; see e.g. Brockwell and Davis (1991). To elaborate, let
³
θ(1),θ(2), ...,θ(N)

´
be

the multivariate output of an MCMC simulation; as before, each θ(s) is assumed to be a

(p× 1) vector with kth coordinate denoted by θ(s)k . The assumptions that are required for
subsampling (i.e., strong mixing and asymptotic stationarity) still are assumed to hold

together with the additional assumption that
√
N (TN − θ) L

=⇒ N (0,Σ∞), for some

nonnegative definite matrix Σ∞.

The problem that now turns up is the estimation of the unknown asymptotic variance-

covariance matrix Σ∞. Subsampling can be used for this purpose as well, under some

additional regularity conditions. Carlstein (1986) proposed the subsampling estimators

of variance based on nonoverlapping blocks from a stationary sequence, while Künsch

(1989) addressed the case of overlapping blocks. Recently, Fukuchi (1997) demonstrated
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the asymptotic consistency of the subsampling estimator of variance in the case of asymp-

totically stationary time series considered in this paper.

Thus, as an estimator of Σ∞ we may use the blocked sample variance matrix V̂b/N ,

where b is the block size as in the previous section. The blocked sampled variance is

given from the following formula (cf. Politis and Romano, 1993):

V̂b/N =


σ̂11b/N σ̂12b/N · · · σ̂1pb/N

σ̂21b/N σ̂22b/N · · · σ̂2pb/N
...

...
. . .

...

σ̂p1b/N σ̂p2b/N · · · σ̂ppb/N



where

σ̂ijb/N =
b

N − b+ 1

N−b+1X
m=1

[Tm,b,i − TN,i] [Tm,b,j − TN,j] , i, j = 1, 2, ..., p (4.4)

Since V̂b/N is an asymptotically consistent estimator of Σ∞ it follows that we can ap-

proximate the probability law of°°°√N (TN − θ)
°°° = supk=1,...,q ¯̄̄√N (TN,k − θk)

¯̄̄
, by the probability law of supk=1,...,q |Zk|,

where the multivariate random variable Z has the N
³
0, V̂b/N

´
distribution. Although

the latter is difficult to evaluate analytically, it is nevertheless very easy to approximate

by Monte Carlo. For this purpose, we let Z1,Z2, ...,ZM be i.i.d. random variables having

distribution N
³
0, V̂b/N

´
, where M is large. Now we have

Prob[ sup
k=1,...,q

¯̄̄√
N (TN,k − θk)

¯̄̄
≤ x] 'M−1

MX
m=1

1{ sup
k=1,...,q

|Zm,k| ≤ x} ' L̃N(x), (4.5)

where we define

L̃N(x) ≡ lim
M→∞

M−1
MX

m=1

1{ sup
k=1,...,q

|Zm,k| ≤ x};

note that the approximations ” ' ” in equation (4.5) occur with high probability for
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large M and N , i.e. they are justified as convergences in probability. The bootstrap

‘rule-of-thumb’ is to take M of the order of a few thousands, and in our examples we

chose M = 10000.

The alternative ‘hybrid’ subsampling diagnostic proceeds the same way (parts A and

B) as the first subsampling diagnostic, the only difference being that now our confidence

regions for the mean and t-quantile are based on the quantiles of the ‘hybrid’ distribution

L̃N(·), and not on the quantiles of the subsampling distribution LN(·). In cases where
the assumption of asymptotic normality is valid then the alternative ‘hybrid’ method is

expected to work better than the subsampling diagnostic of the previous section as it

uses this additional information (on the asymptotic normality). On the other hand, if the

assumption of normality does not hold then the subsampling diagnostic of the previous

section must be used.

4.3.5 Implementation

Description of the simulations

Using theMCMC algorithm, we recursively create theMarkov sequence
³
θ(1),θ(2), ..., θ(N)

´
,

where each θ(i) is a (p× 1) vector; p denotes the number of parameters and N is the

number of iterates (the total sample size). As before the quantity of interest is a function

of the data sequence
³
θ(1),θ(2), ..., θ(N)

´
which we denote by the (q × 1) vector TN ; in

our case we will consider θN or qtN for our TN statistic, and therefore q = p.

To fix ideas, let Nj = jN/100, for j = 1, ..., 100. The simulation algorithm is now

precisely described; for j = 1, ..., 100 do the following:

1) As discussed in the previous section, identify the Bj = Nj − bj + 1 subsamples³
θ(i),θ(i+1), ...,θ(i+bj−1)

´
, for i = 1, ..., Bj; note that the subsample size bj depends on

Nj. We used the simple choice bj =
p
Nj, although other choices are possible as well;

see Hall, Horowitz and Jing (1996), Politis, Romano and Wolf (1997).

2) From the sequence
³
θ(1),θ(2), ...,θ(Nj)

´
, calculate the quantity of interest TNj

(sample mean or t quantile with t = 0.90).
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3) From each subsample
³
θ(i),θ(i+1), ..., θ(i+bj−1)

´
, recalculate the quantity of interest

Ti,Nj , where i = 1, 2, ..., Bj.

4) Let Ti,Nj ,k and TNj ,k denote the kth coordinates of the vectors Ti,Nj
and TNj

respectively. For i = 1, 2, ..., Bj, compute the “maximum deviation” (i.e. sup-norm)

from block i as

di,j = max
k=1,...,q

¯̄
Ti,Nj ,k − TNj ,k

¯̄
,

and

Di,j =
p
bj · di,j

5) In order to find the estimated quantile L−1Nj
(1 − α) (with α = 0.05), we sort Di,j,

i = 1, 2, ..., Bj in an ascending order to come up with the order statistics D(1,j) ≤ D(2,j) ≤
· · · ≤ D(Bj ,j), and then let

L−1Nj
(1− α) = D(b(1−α)·Bj+1c,j)

where b.c is the integer part.
6) As discussed before, the confidence region at “time” Nj is a hypercube in q dimen-

sions that is centered at the value TNj and has “sides” that are perpendicular to the

coordinate axes. The length of each “edge” of the hypercube is identical to the “range”

Rj of the hypercube region which is given by

Rj =
2L−1Nj

(1− α)p
Nj

.

A different way of describing this situation is to say that the q confidence intervals of

the type
µ
TNj ,k ±

L−1Nj (1−α)√
Nj

¶
, for k = 1, ..., q, have simultaneous coverage 1− α for the

q respective coordinate parameters, provided of course the sample size Nj is large.

7) Finally plot Rj versus 1/
p
Nj and take appropriate action based on the plot
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(quantile case), or just the magnitude of the range for the largest Nj considered (sample

mean case).

The implementation of the alternative ‘hybrid’ diagnostic is exactly like the implemen-

tation of the subsampling diagnostic above, the only difference being that the quantile

L̃−1Nj
(1− α) is put instead of L−1Nj

(1− α) in all occurrences of the latter.

Estimation of the ‘burn-in’ using the coefficient of determination

Although linearity can be visually assessed by inspecting the graph, a more objec-

tive/automatic method might be desirable. One way to automatically check the linearity

between the range of the confidence region and the 1Á
p
Nj, in order to estimate the

burn-in, is the coefficient of determination (R2) between these two variables. In detail,

the assumed linear relation is given by the linear model

yj:j+c−1 = βxj:j+c−1 + ε

where yj:j+c−1, xj:j+c−1 denote the vectors (yj, ..., yj+c−1) , (xj, ..., xj+c−1) respectively and

ε represents a mean-zero error term. Each element of the yj:j+c−1 is the estimated

range of the confidence region of the 0.90 quantile (or of the mean) using Nj iterations

and each element of xj:j+c−1 is the corresponding 1Á
p
Nj . The quantity c is chosen

by the practitioner and represents the window of our regression, that is, the number of

elements (yj, xj) in the vectors yj:j+c−1, xj:j+c−1 that is used to calculate the coefficient of

determination. For each pair of vectors (yj:j+c−1,xj:j+c−1) the R2 is calculated, using the

weighted least squares method with weights wj =
p
bjÁNj. Weighted linear regression

is used because the dependent variable is not homoscedastic and its standard deviation

is proportional to the ratio
p
bjÁNj; see, for example, Politis and Romano (1993) where

the variance of the subsampling estimate of variance is calculated. In the examples c = 20

is chosen and therefore there are (100− c+ 1) = 81 different yj:j+c−1, xj:j+c−1 vectors;

for each of them we calculate the R2k, for k = 1, 2, ..., 100− c+ 1.
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If R2k > d for all k > k∗ and some prespecified threshold d we discard the first Nk∗−1

iterations as burn-in. A typical value of d we use is 0.999.

4.3.6 Examples and simulations

To illustrate how the proposed diagnostic performs in practice, the following three ex-

amples are presented. The first example concerns a trivariate normal distribution with

high correlation, the second deals with a bimodal mixture of trivariate normals and the

third refers to the stochastic search variable selection (SSVS) MCMC output introduced

by George and McCulloch (1993).

Example 1

This example is taken from the MCMC diagnostics review paper of Cowles and Carlin

(1996). It is assumed that we deal with a three parameter joint posterior density which is

a zero-mean trivariate normal with correlations 0.90, 0.90 and 0.98 and covariance matrix


1.0 4.5 9.0

4.5 25.0 49.0

9.0 49.0 100.0

 .

The Gibbs sampler is initialized with θ2 = 10, θ3 = −10. The algorithm then proceeds
by sampling from the full conditional densities, which generally are given by:

θi | θj ∼ N
¡
µi +Σij ·Σ−1jj ·

¡
θj − µj

¢
,Σii −Σij ·Σ−1jj ·Σji

¢
, i = 1, 2, 3

where, θi is the ith element of the vector of parameters, θj is the vector of all the other

parameters except the ith, µi is the ith element of the mean vector, µj is the vector of all

the other elements except the ith, and Σij, Σjj, Σii, Σji are the corresponding partitions

of the variance-covariance matrix.
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Iterations
6000 12000 18000 24000 30000

θ1 0.2783 0.2251 0.1824 0.1624 0.1481
θ2 1.4894 1.2206 0.9867 0.8746 0.8023
θ3 2.9927 2.4593 1.9854 1.7529 1.6083

Table 4.1: Accuracy of the posterior mean of the model parameters

To illustrate the diagnostic test, N = 30000 values are generated from the above

iterative Gibbs sampling scheme. A studentization of the values of the parameters has

been made using the simple variance estimator. The range of the confidence interval for

the 0.90 quantile is estimated for Nj =
jN
100

, j = 1, ..., 100, samples. The weighted linear

regression of the range versus (Nj)
−1/2 is our burn-in indicator. Adopting d = 0.999 as a

threshold for R2, we discard as burn-in the first 4800 iterations because after that R2 > d;

see Figure 4-1, where the values of R2 are presented across iterations. The results of the

alternative ‘hybrid’ method are also illustrated in Figure 4-1 (a) and are similar with the

results of our subsampling diagnostic.

The second part of the problem is to estimate how many points are needed to estimate

the parameters of interest with the desired accuracy. This can be done by using the range

of the confidence interval for the mean. The accuracy of the parameters is the difference

of the upper and lower limit of the confidence interval of the mean. Table 4.1 gives the

accuracy of the posterior mean of these parameters for some iterations.

A diagnostic which is similar in spirit with this is the one suggested by Raftery and

Lewis (1992). To compare the two methodologies, we run the Raftery and Lewis diag-

nostic requiring the precision achieved by the proposed diagnostic for the 0.90 quantile

after 30000 iterations. The input values were q = 0.90, the 0.90 quantile, r = ±0.085, the
precision of the 0.90 quantile and s = 0.95, the probability of estimating the 0.90 quantile

within ±0.085 for the parameter θ1. The precision of the 0.90 quantile for parameters
θ2 and θ3 was ±0.458 and ±0.924 respectively. The required burn-in and sample size
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results were 104 and 1105 iterations. It is evident that subsampling diagnostic is much

more conservative than the one by Raftery and Lewis; this is in part due to the high

choice (0.999) as a linearity threshold in our R2 criterion. Nevertheless, in this example

the Raftery and Lewis diagnostic seems to underestimate the sample size required to get

the claimed accuracy. To elaborate, after 1105 iterations and excluding the burn-in of

104 iterations the estimated 0.90 quantiles turn out to be 1.65, 9.02 and 17.78 for the

parameters θ1, θ2 and θ3 respectively, whereas after 30000 iterations the 0.90 quantiles

are estimated to be 1.31, 6.69, and 13.34 respectively, within the desired accuracy of

the true 0.90 quantiles 1.28, 6.40, and 12.81. Note that in both the Raftery and Lewis

diagnostic and subsampling diagnostic, convergence detection is related to precision re-

quired. By demanding smaller accuracy in the posterior quantity of interest, one needs

more iterations for convergence. Cowles and Carlin (1996) also suggest another reason

for the Raftery and Lewis method to be less conservative: more iterations are required

for estimating quantiles near the median than extreme quantiles due to a formula based

on binomial variance.

We ran the subsampling and the alternative method on a Sun Ultra-2, Sparcstation.

The computational time for the subsampling diagnostic we propose is around 3180 sec-

onds, while the alternative hybrid method needs 3306 seconds. For both methods the

above times were used to calculate confidence intervals for both the mean and the 0.90

quantile of the joint density. The Raftery and Lewis diagnostic required only a fraction

of this time (7 seconds) being one of the cheapest diagnostic available; see Brooks and

Roberts (1999).

Example 2

This example is also taken from Cowles and Carlin (1996) and refers to a bimodal target

density consisting of a mixture of two trivariate normals with equal probability. These
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Figure 4-1: Coefficient of determination. Solid line: threshold d=0.999, dashed line:
subsampling method, dotted line: alternative method. (a) Example 1, (b) Example
2, first chain, (c) Example2, second chain, (d) Example 3, problem 1, (e) Example 3,
problem 2.
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two normals have a common covariance matrix
1 1.3 1.5

1.3 2 2

1.5 2 4

 ,

which produces correlations 0.919, 0.75, 0.707, and mean vectors
³
0 0 0

´
and³

−6 −8.49 −12
´
. We generate an MCMC output using a random walk Metropolis

Hastings algorithm consisting of 8000 values.

Two independent chains with starting values (θ1 = 5, θ2 = 15, θ3 = 10) and

(θ1 = −15, θ2 = −20, θ3 = −25) were used to illustrate our diagnostic. The Metropolis
proposal density was chosen so that the two chains remain in the area of one mixture

component and therefore the chain does not visit the whole parameter space. Figures

4-1 (b) and 4-1 (c) depict the resulting R2 for both our suggested diagnostics for the

two chains respectively. Although clearly the Markov chain has not converged to its

stationary distribution, in Figure 4-1 (b) we receive the wrong signal of “getting in” the

target distribution, after 3040 iterations using the subsampling and after 1840 iterations

using the alternative method. On the other hand, in Figure 4-1 (c) we correctly detect

that more iterations are needed because R2 is not continuously higher than the threshold

0.999. The confidence intervals for the mean of the parameters, for the first and the second

chain respectively. Note that the estimated accuracy of the mean of the parameters θ1, θ2,

θ3 is 0.3188, 0.4422, 0.6571, respectively for the first chain and 0.3387, 0.4802, 0.5613, for

the second chain after 8000 iterations. Also, the estimated accuracy of the 0.90 quantile

of the parameters θ1, θ2, θ3 is 0.3873, 0.5161 and 0.7270 respectively for the first chain,

and 0.3935, 0.5106 and 0.7073 for the second chain after 8000 iterations, which clearly

suggests that only a crude estimate is available.

50



Example 3

There are cases in which the posterior summary of interest may be only the posterior

mean with a corresponding confidence interval. These cases are particularly suited to our

methodology. For example, take the usual model choice or variable selection approaches

dealt with the MCMC algorithm; see for example Green (1995), George and McCulloch

(1993). In these models the MCMC output contains a variable, say γ, which expresses

the probability of a model or the probability that a variable is included in the model.

This variable is a string of 0 or 1, and in stationarity, the mean and confidence intervals

of γ are the desired posterior summaries of interest.

A major problem in the linear model theory is the choice of the appropriate set of

regressors which explain satisfactorily the variability of the dependent variable. Recently

George and McCulloch (1993) developed the Stochastic Search variable Selection (SSVS)

which enables the calculation of the posterior probability of inclusion of a regressor.

To illustrate our methodology, we use the example 4.1 of George and McCulloch

(1993). There are five regressors X1, ...,X5
iid∼ N (0, 1) of size n = 60 which are used

in two variable selection problems. In Problem 1, the dependent variable is generated

according to the model

Y = X4 + 1.2X5 + ε,

where ε ∼ N60 (0, σ
2I) with σ = 2.5. Problem 2 is identical to Problem 1, apart from

the regressor X3 which is replaced by X∗3 = X4 + 0.15Z where Z ∼ N (0, 1) , yielding
corr (X3,X5) = 0.99.

For each of the potential models of the above problems we can construct, using the

SSVS method, a variable which takes values 1 or 0, depending on whether the particular

model is chosen or not in the current iteration. To obtain a sample from these posterior

model probabilities we construct an MCMC chain that converges to the posterior dis-

tribution of interest. For more details of the above methodology and the example, see

George and McCulloch (1993).
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Problem 1 Problem 2
Model Prob Accuracy
{X4,X5} 0.23 0.010311
{X5} 0.16 0.008893
{X2,X4,X5} 0.09 0.006071
{X2,X5} 0.06 0.005508
{X4} 0.06 0.005530

Model Prob Accuracy
{X4,X5} 0.10 0.010450
{X3,X4} 0.09 0.009580
{X4} 0.08 0.007388
{X5} 0.07 0.007678
{X3} 0.06 0.006669
{X3,X4,X5} 0.05 0.009486

Table 4.2: Posterior model probabilities and their accuracies

We focus our analysis on the models that have more than 0.05 posterior probability.

Using an MCMC chain of 50000 iterations and choosing as threshold value d = 0.999, we

estimate the burn-in period. This comes out to be 4500 and 6000 iterations for Problems

1 and 2 respectively (see Figures 4-1(d) and 4-1(e)). The resulting model probabilities and

corresponding accuracies after 50000 iterations are presented in Table 4.2. The variables

in the curly brackets are contained in the resulting models.

Assume that, in a hypothetical scenario, one needs to obtain posterior model prob-

abilities with a required accuracy of 2% of their estimated value. The results of our

diagnostic can guide the MCMC to run for a number of iterations such that the above

requirement is satisfied. In detail, discarding the burn-in period for each model, there

is a strong linear relation between the range of the confidence region and the 1Á
p
Nj

as indicated in previous sections. Therefore, a weighted regression between the range,

as dependent variable, and 1Á
p
Nj, could give an estimate for the required iterations

that are needed to estimate the posterior model probabilities with the desired accuracy.

Table 4.3 contains the estimated iterations that an MCMC needs in order to estimate

the model probabilities for Problems 1 and 2 with accuracy of 2% of their estimated

value. Note that if our desired accuracy was produced in less than 50000 iterations, this

could be a significant drawback of our diagnostic: we produced unnecessary iterations to

estimate that only a portion of them is needed!
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Problem 1 Problem 2
Model Iterations
{X4,X5} 252286
{X5} 345571
{X2,X4,X5} 521015
{X2,X5} 817300
{X4} 855504

Model Iterations
{X4,X5} 1150652
{X3,X4} 1125107
{X4} 883304
{X5} 1107036
{X3} 1359638
{X3,X4,X5} 3941288

Table 4.3: Number of iterations for specific accuracy
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Chapter 5

The Auxiliary Variable Sampler

5.1 Introduction

During the last decade, statisticians have been focused on the Markov Chain Monte

Carlo techniques such as Gibbs (Gelfand and Smith,1990) and Metropolis - Hastings

algorithm (Metropolis et al., 1953; Hastings, 1970), in order to sample from the com-

plex multivariate posterior distributions appeared in many statistical problems (Gilks et

al,.1995).

Both these algorithms may present difficulties in certain problems. Firstly, the im-

plementation of the Gibbs sampler may lead to the need of sampling from non-standard

conditional densities. In the last case, methods to sample from these non-standard densi-

ties must be developed, something which is not always possible or efficient. Alternatively,

Metropolis-Hastings algorithm must be utilized in order to update the parameters from

these non-standard densities. However, the Metropolis-Hastings algorithm presupposes

the choice of an appropriate “proposal” density that will lead to efficient sampling and

this can be succeeded only with a lot of tuning on the proposal density, for the specific

application.

These major drawbacks of the two popular MCMC algorithms have restrained the

55



development of computer programs that will automatically simulate Markov Chains for

Bayesian modelling.

Lately, a new MCMC algorithm has been proposed, which overcomes the aforemen-

tioned problems in many statistical applications. This algorithm is based on the idea of

introducing one or more auxiliary variables to the Markov chain Monte Carlo scheme, in

such a way that enables the development of a Markov chain that is easier to be simulated.

This algorithm is called auxiliary variable algorithm or slice sampler.

The idea of using auxiliary variables to a MCMC scheme was firstly introduced by

Swendsen and Wang (1987) for Ising model. Edwards and Sokal (1988), Besag and Green

(1993), Higdon (1998), Damien et al. (1999) and Neal (2003) demonstrate the usefulness

of this technique in a variety of statistical applications.

The theoretical properties of the auxiliary variable sampler have been studied by

Fishman (1999), Mira and Tierney (1998) and Roberts and Rosenthal (1999).

5.2 The Auxiliary Variable Sampler

As already mentioned, the auxiliary variable sampler technique is based on the use of

latent variables in order to develop easy to simulate Markov chains. The application of

the auxiliary variable sampler is based on the following Theorem of Damien et al. (1999,

theorem 1, page 332).

Theorem 4 Suppose that we wish to generate random variates from a density f given

by

f (x) ∝ π (x)
nQ
i=1

li (x) ,

where π is a density of known form and li are non-negative invertible functions (not

necessarily densities), i.e. if li (x) > u is possible to obtain the set Ac
u = {x : li (x) > u} .

Then a Gibbs sampler for generating random variates from f exists, where all except

one of the full conditions are uniform densities and the remaining full conditional is a
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truncated version of π.

Proof: see Damien et al. (1999).

Based on the above Theorem, Markov chains can be constructed by introducing latent

variables in the distribution of interest in such a way that the MCMC algorithm which

is comprised entirely on Gibbs steps.

Assume that a sample from the density p (θ|y) ∝ π (θ) l (y|θ) is required. However,
this is not feasible to be accomplished by applying standard methodology. Instead of

using Metropolis-Hastings algorithm, a latent variable, say u, defined on the interval

(0,∞) is introduced in such a way that the joint density of θ and u will be given by

p (θ, u|y) ∝ π (θ) I {u < l (y|θ)} . (5.1)

In (5.1) the resulting full conditional densities for u and θ are of standard form and a

MCMC scheme can be constructed based upon those full conditional densities. In detail,

the MCMC algorithm for this case is given below:

1. Give initial value to θ, θ0

2. Sample u1|θ0 ∼ Uniform(0, l
¡
y|θ0¢)

3. Sample θ1|u1 ∼ π () truncated on the interval S = {θ : u1 < l (y|θ)} .

4. Repeat from step 2.

5.3 Variations of the Auxiliary Variable Sampler

5.3.1 Introduction

A wide variety of alternative versions referring to the auxiliary variable sampler have

been proposed in related literature. A standard classification scheme for these versions
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of auxiliary variable sampler has been proposed by Mira and Tierney (1998) and will

be presented in this section. Note that, in the Bayesian framework the distribution of

interest is known up to a constant and it is extracted via the Bayes theorem, i.e.

p (θ|y) ∝ π (θ) l (y|θ) . (5.2)

5.3.2 The Simple Auxiliary Variable Sampler

This version of the auxiliary variable sampler is fully presented in Damien et al. (1999),

and it is based on the Theorem (4). One positive latent variable, say u is introduced in

(5.2) such as:

p (θ,u|y) ∝ π (θ) I {u < l (y|θ)} .

Then the MCMC algorithm takes the following form:

1. Give initial value to θ, θ0

2. Sample u1|θ0 ∼ Uniform
¡
0, l
¡
y|θ0¢¢

3. Sample θ1|u1 ∼ π (·) truncated on the interval S = {θ : u1 < l (y|θ)} .

4. Repeat from step 2.

Note that, the full conditional density of the latent variable u is uniform and the full

conditional density of θ is a truncated version of the prior π (·) .

5.3.3 The Multiple Auxiliary Variable Sampler

The variation of the auxiliary variable sampler that is presented in this section has been

introduced by Edward and Sokal (1988). Suppose that the full posterior density can be
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written as:

p (θ|y) ∝ π (θ) l (y|θ)

∝ π (θ)
kY
i=1

gi (y|θ) ,

then a collection of k positive latent variables can be introduced, u = (ui..., uk), such as

the joint density of θ and u is given by:

p (θ,u|y) ∝ π (θ)
kQ
i=1

I {ui < gi (y|θ)} .

Then the MCMC algorithm takes the form:

1. Give initial value to θ, θ0

2. Sample u1i |θ0 ∼ Uniform
¡
0, gi

¡
y|θ0¢¢ , for i = 1, ..., k.

3. Sample θ1|u1k, ..., u1k ∼ π (·) truncated on the interval
S = {θ : u1i < g1 (y|θ) , for i = 1, ..., k} .

4. Repeat from step 2.

5.3.4 The Product Auxiliary Variable Sampler

As in the previous case of the multiple auxiliary variable sampler, suppose that the full

posterior density can be written as:

p (θ|y) ∝ π (θ) l (y|θ)

∝ π (θ)
kY
i=1

gi (y|θ) .
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Instead of introducing a collection of auxiliary positive variables, only one random vari-

able u is introduced such as:

p (θ,u|y) ∝ π (θ) I

½
u <

kQ
i=1

gi (y|θ)
¾
.

Then, the MCMC algorithm takes the following form:

1. Give initial value to θ, θ0

2. Sample u1|θ0 ∼ Uniform

µ
0,

kQ
i=1

gi
¡
y|θ0¢¶ .

3. Sample θ1|u11 ∼ π (·) truncated on the interval S =
½
θ : u1 <

kQ
i=1

g1 (y|θ)
¾
.

4. Repeat from step 2.

Note that, the above algorithm is exactly the same with the algorithm for the simple

auxiliary variable sampler if we replace
kQ
i=1

g1 (y|θ) with l (y|θ) .

5.4 Properties of the Auxiliary Variable sampler

Mira and Tierney (1998), Roberts and Rosenthal (1999) and Fishman (1999) have studied

the theoretical properties of the auxiliary variable algorithm and came up with a series

of promising results about the ergodicity of the sampler and the quantitative bounds on

the total variation distance from stationarity after a given number of iterations. Initially,

the Markov chain that is constructed from the application of this sampler is irreducable

and aperiodic. These properties have as result that the Markov Chain converges to the

distribution of interest as n→∞, independently from the starting points. Moreover, all

the variations of the auxiliary variable sampler are uniformly ergodic under some mild

regularity conditions (Mira and Tierney, 1998). The Theorem below, introduced by Mira
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and Tierney (1998) presents these regularity conditions for the uniform ergodicity and

the rate of convergence rc for all versions of auxiliary variable sampler

Theorem 5 The main variations of the auxiliary variable sampler are uniform ergodic.

In detail,

1. The simple auxiliary variable sampler, f (θ, u|y) ∝ π (θ) I {u ≤ l (y|θ)} , is uniform
ergodic if l (·) is a bounded function, and the rate of convergence to stationarity in
total variation distance is such that

r ≤
(
1− h

·
sup
θ∈Θ

l (θ)

¸−1)
,

where

h =

Z
Θ

π (θ) l (y|θ) dθ,

2. The product auxiliary variable sampler f (θ, u|y) ∝ π (θ)
Q
i

I {ui ≤ li (y|θ)} , is uni-
form ergodic if

Q
i

li (y|θ) is bounded and the rate of convergence to stationarity in
total variation distance is such that

r ≤
1− h

"
sup
θ∈Θ

Y
i

li (θ)

#−1 ,

where h =
R
Θ
π (θ)

Q
i

li (y|θ) dθ,

3. The multiple auxiliary variable sampler f (θ, u|y) ∝ π (θ) I

½
u ≤Q

i

li (y|θ)
¾
, is

uniform ergodic if li (y|θ) are bounded functions and the rate of convergence to
stationarity in total variation distance is such that

r ≤
1− h

"Y
i

sup
θ∈Θ

li (θ)

#−1 ,
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where

h =

Z
Θ

π (θ)
Y
i

li (y|θ) dθ.

Proof: see Mira and Tierney (1998).

In addition to that, Roberts and Rosenthal (1999) proved that all the variations

of the auxiliary variable sampler are geometrically ergodic. The following Theorems

of Roberts and Rosenthal (1999) established this property for the versions of auxiliary

variable sampler

Theorem 6 Consider the simple auxiliary variable sampler, f∗ (θ, u|y) ∝ I {u ≤ f (θ|y)} ,
on a bounded density f (θ|y). Let L (u) = {θ : f (θ|y) ≥ u} and Q (u) for m (L (u)) ,

where m is Lebesque measure. Suppose that the function Q(u) is differentiable, and that

there is a constant a > 1 such that Q
0
(u)u1+1/a is non-increasing, at least on an open set

containing 0. Then the Markov chain for the simple auxiliary sampler is geometrically

ergodic.

Proof: see Roberts and Rosenthal (1999).

The above Theorem is referred to the case where f (θ|y) is bounded. On the other
hand, if f (θ|y) is unbounded the geometrically ergodicity is still hold under some con-
ditions that presented below

Theorem 7 Consider the simple auxiliary variable sampler,

f∗ (θ, u|y) ∝ I {u ≤ f (θ|y)} , on a unbounded density f (θ|y) with infinite support. Sup-
pose that the function Q(u) is differentiable, and that there is a constant a > 1 such that

Q
0
(u)u1+1/a is non-increasing for u in an open set containing 0, and furthermore that

(Q−1)
0
(w)w1+1/a is non-increasing for w in an open set containing 0. Then the Markov

chain for the simple auxiliary sampler is geometrically ergodic.

Proof: see Roberts and Rosenthal (1999).

62



Theorem 8 Consider the product auxiliary variable sampler, f (θ,u|y) ∝
kQ
i

I {ui ≤ fi (θ|y)} .
Suppose that, for each i fi (θ|y) is bounded. Set Q1 (u) = m (L (u; f1)) and suppose that

the function Q1 is differentiable with Q
0
1 (u)u

1+1/a non-increasing, at least in some open

set containing 0. Suppose that, for all ε > 0, the set {z :f1 (z) ≥ ε} is compact, and for
each 1 ≤ i ≤ k the function fi is bounded away from 0 on compact intervals. Finally sup-

pose that, fi (θ1) ≤ fi (θ2) holds, then the Markov chain for the product auxiliary sampler

is geometrically ergodic.

Proof: see Roberts and Rosenthal (1999).

In addition to that, Roberts and Rosenthal (1999) proved that geometrical ergodicity

still holds and for the case of the product auxiliary sampler where fi are not all decreasing

in the same direction.

The most profound result of the work of Roberts and Rosenthal (1999) is the fact that

they have managed to provide rigorous quantitative bounds on the total variation dis-

tance from stationarity after a given number of iterations for the case of simple auxiliary

sampler:

Theorem 9 Consider the simple auxiliary variable sampler, f∗ (θ, u|y) ∝ I {u ≤ f (θ|y)} ,
on a bounded density f (θ|y) such as the function Q(u) is differentiable and uQ

0
(u) is

non-increasing. Assume Ep∗∧δu (V ) ≤ 3, that is the expected value of V under the stochas-
tic minorant (with respect to the ordering ≤) of the stationary distribution f (θ|y) (nor-
malizing) and the point mass δu (·) . Then the simple auxiliary variable sampler for f

satisfies

kPn (θ, ·)− f (·)k ≤ 0.054865 (0.985015)n (n− 15.7043) , n ≥ 23,

where P n (θ, ·) is the transition kernel of the Markov chain.
Proof: see Roberts and Rosenthal (1999).

For example, if we run a Markov chain, which is constructed from the simple auxiliary

variable sampler for n = 530, we obtain kP 530 (θ, ·)− f (·)k ≤ 0.0095. Therefore, the total
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variation distance to stationarity is less than 1%.

5.5 Comparison of the Auxiliary Variable Sampler

with the Metropolis-Hastings scheme

A relatively small number of publications is concerned with the direct comparison of

the auxiliary variable sampler with the other MCMC schemes. A first approach on

this issue was conducted by Damien at al (1999). In this paper, authors compared

the auxiliary variable sampler with the independent Metropolis-Hastings algorithm and

concluded that auxiliary variable sampler is more efficient. Based on their approach, let

f (θ|y) ∝ π (θ) l (y|θ) , the distribution from which a sample must be drawn. Consider a

specific version of the independent Metropolis-Hastings where π (·) is the proposal density.
Let θ(t) the current point of the MCMC chain. In this case, the Metropolis-Hastings step

in order to update the parameter θ takes the form:

1. sample θpr from π (·) ,

2. sample u from Uniform (0, 1) , if u ≤
³
l (θpr)Ál

³
θ(t)
´´
accept the new value, i.e.

θ(t+1) = θpr, otherwise θ(t+1) = θ(t).

Suppose now that the order under which the steps are taking place on the above al-

gorithm is changed. As a consequence of this change, it is u that must be sampled firstly

fromUniform (0, 1) ,while the second step will be to sample θ from π (·) I (θ : l (θ) ≥ l (θ)) .

In detail

1. sample u from Uniform (0, 1)

2. sample θ from π (·) I (θ : l (θ) ≥ l (θ))

The second step of the above algorithm is an auxiliary variable step and the Markov

chain always proceeds with respect to the Metropolis-Hastings step of the initial algo-
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rithm, where the motion is succeeded with probability
³
l (θpr)Ál

³
θ(t)
´´

, otherwise the

new sampling point is the previous one.

In addition to that, Mira and Tierney (1998) proved that the simple and the prod-

uct auxiliary variable samplers dominate off the diagonal the independence Metropolis-

Hastings algorithm that use as proposal π (·) , where f (θ|y) ∝ π (θ) l (y|θ). Moreover,
they proved that the transition kernels of the simple and the product auxiliary variable

samplers have smaller second largest eigenvalues than these corresponding to the indepen-

dence Metropolis-Hastings kernel. This result means that the auxiliary variable samplers

converge faster to the distribution of interest than the independent Metropolis-Hastings

algorithm.

Another result of Mira and Tierney (1998) is that a simple or product auxiliary vari-

able sampler can be set up to have smaller asymptotic variance of the sample paths

averages than the specific Metropolis-Hastings algorithm. For example, suppose that a

sample is needed to be taken from f (θ|y) . Let q (θ) the proposal density of the inde-
pendent Metropolis-Hastings algorithm. Then, by setting l (y|θ) = f (θ|y)Áq (θ) the

distribution of interest can be factorized as f (θ|y) = q (θ) l (y|θ) . The resulting sim-
ple auxiliary variable sampler f (θ, u|y) ∝ q (θ) I {u ≤ l (y|θ)} , has smaller asymptotic
variance of the sample paths averages.

5.6 Auxiliary Variable Sampler in Bayesian Model-

ing

Damien et al. (1999) provided various examples of using auxiliary variable sampler

for non-conjugate and hierarchical models. For example, for the class of non-conjugate

models, the Poisson log−Normal model is presented. In this case, τ ∼ Poisson (exp (λ))

is observed. If Normal prior with mean 0 and variance 1 (N (0, 1)) is assumed for λ, then
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the posterior distribution of λ takes the form:

f (λ|τ) ∝ exp {τλ− exp (λ)} exp©−0.5λ2ª .
A positive latent variable u can be included such as:

f (λ, u|τ) ∝ exp {−u} exp©−0.5 ¡λ2 − 2τλ¢ª I {u > exp (λ)} .

Then the MCMC algorithm for sampling from the posterior density of λ becomes:

1. Give initial value to λ, λ0

2. Sample u1|λ0 ∼ exp onential (1) I ¡u > exp
¡
λ0
¢¢

.

3. Sample λ1|u1 ∼ Normal (τ , 1) I (λ < log (u1)) .

4. Repeat from step 2.

In the context of hierarchical models Damien et al. (1999) proposed algorithms for

both generalized linear mixed models and for non-linear mixed models.

In the case of non-linear mixed models we have the following model:

yij|θi, σ2 ∼ N
¡
g (θi, xij) , σ

2
¢

where yij represents the observations, i = 1, ..., n, j = 1..., ni, N =
nP
i

ni, θi is the random

effect, xij are the explanatory variables and g (θi, xij)is a known non-linear mean response

function. For this model the posterior density for θi takes the form:

f (θi, ..., θn|Y) ∝
nY
i=1

(
niY
j=1

exp

½
− 1

2σ2
(yij − g (θi, xij))

2

¾)
· π (θi)

where π (·) is the prior for θi.
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Due to the non-standard form of the conditionals densities of θi the model can be

rewritten considering a positive latent variable uij for each yij. Therefore, the model takes

the following form:

yij/uij, θi ∼ Uniform
¡
gij (θi, xij)−√uij, gij (θi, xij) +√uij

¢
,

and

uij ∼ G

µ
3

2
,
1

2σ2

¶
.

So, the posterior (density) is given by:

f (θi, ..., θn|Y) ∝ exp
(
−0.5

X
i

X
j

uij

)
·
Y
i

Y
j

©
I
¡
uij > (yij − g (θi, xij))

2¢ªπ (θi) .
Based on the above posterior density the full conditionals take the form:

uij|· ∼ exp onential (0.5) I
¡
uij > (yij − g (θi, xij))

2¢ ,
for i = 1, ..., n and j = 1, ..., ni

θi|· ∼ π (·)
niY
j

I
¡
uij > (yij − g (θi, xij))

2¢ ,
for i = 1, ..., n.

5.7 Main Drawbacks of Auxiliary Variable Sampler

The auxiliary variable sampler is a new MCMC scheme with a lot of useful properties.

One of the most important ones, is that enables the construction of easy-to-implement

and fast-to-converge Markov chains. On the other hand, this technique has some negative

points.
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Suppose, that a random sample is needed from the posterior density f (θ|y) ∝ π (θ) ·
l (y|θ) . The auxiliary variable sampler can be utilized by applying Theorem 1 of Damien
et al. (1999) i.e. f (θ, u|y) ∝ π (θ) · I (u < l (y|θ)) .
In Theorem 1 of Damien et al. (1999), l (θ) is assumed to be invertible, i.e. if

l (y|θ) > u then it is possible to obtain, explicitly, the set S = {θ : l (y|θ) > u}. This
specific condition is satisfied in many statistical models, but there are others where all

solutions of l (θ) = u cannot be tracked analytically. In order to overcome this problem

robust numeric methods must be applied but there are cases where the usage of these

numerical methods is not feasible.

Another drawback of the auxiliary variable sampler is that does not allow the updat-

ing of all parameters or a block of them simultaneously. Suppose that θ = (θ1, ..., θk)

with posterior density f (θ|y) ∝ π (θ) l (y|θ) . If any version of auxiliary variable sam-
pler is applied then the full conditional density for θ is a multivariate density with

a set of truncations. Sampling from truncated multivariate densities is not feasible,

apart from some special cases, see Robert (1995). In order to overcome this problem,

the simultaneous updating of all the parameters θ is not applied but instead, each pa-

rameter θi is updated given the rest parameters using the univariate full conditionals

f (θ1|·) , f (θ2|·) , ..., f (θk|·) , which are univariate truncated densities and therefore it is
more easy to sample from them.

On the other hand, it is commonly accepted that sampling all or a block of parameters

simultaneously leads to faster convergence rates, ’The larger the block that are updated

simultaneously the faster the convergence’ (Amit and Grenader, 1991). There are some

counterexamples for this statement (Roberts and Sahu, 1997), but it is a common prac-

tice to update block of parameters, instead of updating parameters one by one. This

approach is used in order to speed up convergence and reduce the correlation between

the parameters.
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5.8 TheMetropolis scheme within the Auxiliary Vari-

able Sampler

Suppose that a sample from f (θ|y) is needed. For this reason, the simple auxiliary
variable sampler scheme is applied by including one positive latent variable u, such as:

f (θ, u|y) ∝ I {u < f (θ|y)} .

The corresponding MCMC algorithm is:

1. Give initial value to θ, θ0.

2. Sample u|θ0,y ∼ Uniform (0, f (θ|y)) .

3. Sample θ1|u,y ∼ Uniform (0, {θ : f (θ|y) ≥ u}) .

4. Repeat from step 2.

Suppose now, that f (θ|y) is not invertible with respect to θ. In such case, numer-

ical methods or a Metropolis-Hastings step could be used as Higdon (1998) proposed.

Following Higdon (1998) the MCMC algorithm takes the form:

1. Give initial value to θ, θ0.

2. Sample u|θ0,y ∼ Uniform (0, f (θ|y)) .

3. Sample θnew from a symmetric proposal density g (·|θ) and keep θnew as a new point
θ1 if f (θnew|y) ≥ u or else the new point is the previous one, i.e. θ1 = θ0.

It should be mentioned that, the above algorithm inherits the disadvantage of the

Metropolis-Hastings sampler. Therefore, a lot of tuning for the proposal g (·|θ) is needed
in order to have efficient sampling and the most of the advantages of the auxiliary variable

sampler are vanished.
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5.9 Neal’s Approach

Neal’s (2003) extensive and innovative study on the auxiliary variable sampler had as

an outcome the suggestion of a number of procedures that efficiently enabled researchers

to overcome all the aforementioned drawbacks of this method. His research focused

on the simple auxiliary sampler and incorporated automated procedures for solving the

problem of non-invertibility as defined in section 5.7 and the problem of updating blocks

of parameters.

Following Neal (2003), let π (θ) the density from which a sample must be taken.

Adopting the scheme of simple auxiliary variable sampler, one positive latent variable u

is introduced such as:

f (θ, u) ∝ I (u < f (θ)) .

The resulting MCMC algorithm takes the form:

1. Give initial value to θ, θ0.

2. Sample u|θ0 ∼ uniform
¡
0, f

¡
θ0
¢¢

. Then a set (slice) S =
©
θ : u ≤ f

¡
θ0
¢ª
is

defined.

3. Find an interval I=(L,R) around θ0 that contains at least a big part of set S.

4. Sample θ1 from Uniform density defined on S ∩ I.

5. Repeat from step 2.

In case that f (θ) is invertible with respect to θ then L = inf (S) and R = sup (S)

can be set. The last result is equivalent to the simple auxiliary variable sampler defined

by Damien et al. (1999).

If f (θ) is not invertible, then Neal (2003) suggested to pick randomly an initial interval

of size w that contains θ0 and expanding this interval in order to contain a big part of S.

For this expansion, Neal (2003) proposed two procedures, the ’stepping out’ procedure

and the ’doubling’ procedure.
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5.9.1 The Stepping-out Procedure

Let f (θ|u) be the conditional density from which a sample is required. Let θk denote

the current point, u the latent variable that defines the slice S =
©
θ : u ≤ f

¡
θk
¢ª

, w is

the interval width, m an integer that sets the maximum size of the interval equal to mw

and I=(L,R) the interval that has to be defined, where L is the lower bound and R is

the upper bound respectively. Then

1. Sample z, v ∼ Uniform (0, 1) .

2. Set L = θk − wz and R = L+ w.

3. Set K1 = Floor(mv) and K2 = (m− 1)−K1.

4. Repeat while K1 > 0 and u < f (L|u) : L = L− w and K1 = K1 − 1.

5. Repeat while K2 > 0 and u < f (R|u) : R = R+ w and K2 = K2 − 1.

The initial interval of size w is posed randomly around θ0 and this is essential for the

correctness of the method. In the application of the above procedure a rough estimate

for w, the size of the interval, is needed. The size of the interval can be allowed to grow

to any size or to a specific size mw. Of course, the size of the interval can be set always

to be w, but this approach might proven to be inefficient in case that the interval is to

small. In case that θ is bounded, then the interval can be set to be equal with the region

that is defined by θ. However, this may be inefficient if the S ∩ I is much smaller than
this region.

5.9.2 The Doubling Procedure

Let f (θ|u) the conditional density from which a sample should be drawn. Let θk the

current point, u the latent variable that defines the slice S =
©
θ : u ≤ f

¡
θk
¢ª

, w is the

interval width, p is an integer that set the maximum size of the interval equal to 2pw and
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I=(L,R) is the interval that has to be defined, where L is the lower bound and R is the

upper bound respectively. Then

1. Sample z ∼ Uniform (0, 1) .

2. Set L = θk − wz, R = L+ w, and K = p.

3. Repeat while K > 0 and {u < f (L|u) or u < f (R|u)} :

• Sample v ∼ Uniform (0, 1) .

• If v < 0.5 then L = L− (R− L) else R = R+ (R− L) .

• K = K − 1.

As previously described, an initial interval of size w is assigned randomly around θ0

and a rough estimation for w is needed. This procedure expands the initial interval faster

than the stepping out procedure and this could be more efficient if the initial interval of

size w is too small.

5.9.3 Discussion

Neal (2003) proved that both procedures in the context of simple auxiliary variable

sampler leave the density of interest invariant and the resulting Markov chain ergodic.

In case of doubling procedure one test must be done, in order the above properties to

be valid. In detail, let f (θ|u) the conditional density from which the sample must be

extracted. Let θk, θk+1 denote the current and the possible next point respectively, u the

latent variable that defines the slice S =
©
θ : u ≤ f

¡
θk
¢ª

, w the interval width and let

I=(L,R) be the interval found by the ’doubling’ procedure. Then

1. Set bL = L, bR = R, and B = false.

2. Repeat while bR− bL > 1.1w :

• M =
³ bR+ bL´Á2.
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• If ©θk < M and θk+1 ≥M
ª
or
©
θk ≥M and θk+1 < M

ª
, then B = true.

• If θk+1 < M then bR =M ; else bL =M.

• If B = true and u ≥ f
³bL|u´ and u ≥ f

³ bR|u´ , then the θk+1 is not accept-
able.

3. θk+1 is acceptable if not rejected in the loop above

This test ensures that the new value of θ is sampled in such a way that the above

properties are hold. In cases that the conditional distribution is unimodal the above test

can be omitted.

By using the ’stepping out’ procedure or the ’doubling’ procedure an interval I that

contains a big part of S {θ : u < f (θ)} can be found. Then sample points must be

repeatedly drawn from a Uniform density defined on I till the moment that the first

of those sample points is drawn from S. This sampling procedure might proven to be

inefficient in case that I is much larger than S. A more efficient method is to sample

uniformly from an interval that is initially equal to I and shrink the interval each time

that a new point is sampled out of S, until a θ from S is sampled. A procedure that

shrinks the initial interval I has been proposed by Neal (2003) and is presented below.

Let f (θ|u) be the conditional density from which a sample must be drawn. Let θk

denote the current point, u the latent variable that defines the slice S =
©
θ : u ≤ f

¡
θk
¢ª

,

w the interval width and let I=(L,R) be this interval. Then,

1. Set bL = L, bR = R, and B = false.

2. Repeat

• Sample z ∼ Uniform (0, 1)

• Set θ∗ = bL+ z
³ bR− bL´ .

• If u < f (θ∗|u) and Accept(θ∗) then exit loop.

• If θ∗ < θk then bL = θ∗ else bR = θ∗.
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3. θk+1 = θ∗.

Accept(θ∗)means that in the case of doubling procedure the value is accepted from the

test above. Up to now experience indicates that the aforementioned shrinkage procedure

could be very useful in case that θ is bounded. In such cases the initial interval could be

set to be the interval that is defined by θ and sample from this interval uniformly and

shrink it by using the above procedure each time that the new point is not in S.

5.10 The Multivariate Auxiliary Variable Sampler

In many cases it is more preferable to update blocks of parameters instead of updating

the parameters one by one. Suppose that θ = (θ1, ..., θk) is a vector of k parameters with

posterior density f (θ|y) known up to a constant. Our aim in this case is to take sample
from f (·|y). One way is to use one of the described variations of auxiliary variable
sampler. In detail, one Markov Chain could be constructed in a way that will update

the elements of θ one by one. On the other hand, the following algorithm proposed by

Neal (2003) could be used by updating the whole vector θ at once.

Specifically, Neal (2003) proposed to include in the density of interest one random

variable u so that

f (θ, u|y) ∝ I (u < f (θ|y)) .

Then the MCMC algorithm takes the form:

1. Give initial values to θ such as θ0 =
¡
θ01, ..., θ

0
k

¢
.

2. Sample u from Uniform
¡
0, f

¡
θ0|y¢¢ . The sampled u defines the set

S {θ : u < f (θ|y)} from which we must sample θ.

3. Pose randomly a hyperrectangle H = (L1, R1) × ... × (Lk, Rk) around θ
0, which

preferably contains a big part of S

4. Sample uniformly θ from S ∩H.
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5. Repeat from step 2.

Ideally, H to be the smallest hyperrectangle containing S, but this is unlikely to be

feasible. Neal (2003) proposed to use a hyperrectangle around θ0, where the width of

each edge wi = Ri − Li is decided by our experience. Furthermore, sample points are

repeatedly taken uniformly from this hyperrectangle up to find a point that belongs to

S.

Another approach is to sample uniformly from H and shrink H every time that the

sampled point does not belong to S. All the dimensions of the hyperrectangle can be

shrunk when the point that it was sampled does not belong to S or only the axis where

the following quantity is maximized can be shrank :

Qi = (Ri − Li) |Gi| ,

where G is the gradient of log f (θ|y) and θ is the sampled point.

The above procedure may be time consuming if H is much greater than S. Doubling

and stepping out procedures, that described previously in the context of one-dimension

auxiliary variable sampler, may be appropriate extended to fit in multivariate auxiliary

variable sampler.

Multivariate auxiliary variable sampling schemes are in their early stages of develop-

ment. Therefore, it becomes evident that apart from the above described scheme and a

framework for adaptive multivariate auxiliary variable sampling (Neal 2003) which will

be presented in a following section, a minimal number of effort has been made in this

area.
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5.11 Other Aspects of the Auxiliary Variable Sam-

pler

5.11.1 Partial Decoupling Method

The method of partial decoupling was first proposed by Higdon (1993). In the context

of the auxiliary variable sampler the method is introduced by Higdon (1998), and has

been proved to be useful for sampling from posterior distributions resulting from binary

imaging problems. In detail, the posterior is of the form:

f (θ|y) ∝ π (θ)
Y
k

bk (θ) .

Higdon (1998) introduced k latent parameters, u =(u1, ..., uk) , and transforms the den-

sity such as:

f (θ,u|y) ∝ π (θ)
Y
k

bk (θ)
1−δk · I

³
uk ≤ bk (θ)

δk
´
.

The marginal density with respect to θ is

f (θ|y) ∝ π (θ)
Y
k

bk (θ) .

The choice of δ is either given by the user or by a decreasing function of data ranging

from 1 to 0.

5.11.2 The Overrelaxed Auxiliary Variable Sampler

Overrelaxed methods were introduced by Adler (1981), and discussed by Barone and

Frigessi (1990) and Neal (2003). Here, instead of sampling a new point from its full con-

ditionals, a point is chosen that is on the opposite side of the mode of the full conditional

from the previous point.

In detail, if the full conditional is the Normal density then the new value is chosen as
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(Adler 1981):

θnew = µ+ α
¡
θprevious − µ

¢
+ σ

¡
1− α2

¢ 1
2 ε,

where µ, σ are the conditional mean and standard deviation of θ, ε ∼ N (0, 1) and

α > −1. This method takes into account the dependencies between variables and moves
faster from one part of the distribution to another.

For the case of unimodal distributions Neal (2003) introduced an overrelaxed auxiliary

variable scheme. More specifically, let f (θ|y) the posterior density from which we want

to sample. Introducing one latent variable u such as f (θ, u|y) then the Markov chain
Monte Carlo algorithm is given by:

1. Give initial value θ0.

2. Sample u from Uniform
¡
0, f

¡
θ0|y¢¢ . Then S = {θ : u < f (θ|y)} is defined.

3. Find an interval I=(L,R) that contains the biggest part from S. In case that I is

bigger than S then estimate the endpoints of S using bisection.

4. Set the new value for θ as θ1 = L+R− θ0.

5. Repeat from step 2.

Note, that the new point must be rejected if it does not belong to S. Apart from that,

the application of bisection in order to locate the endpoints of S might be proven to be

time consuming.

5.11.3 The Adaptive Multivariate Auxiliary Variable Sampler

The adaptive multivariate auxiliary variable sampler has been introduced by Neal (2003)

and can be viewed as a generalization of the multivariate method that has been described

in section 5.10. According to this method, the points that do not belong to S can be

used to guide the selection of the new point. Neal (2003) uses ’crumbs’ that lead the

selection of the new point inside S.
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In detail, let f (θ|y) be the density of interest and f (θ, u|y) ∝ I (u < f (θ|y)) . The
Markov chain Monte Carlo algorithm takes the form:

1. Give initial value to θ, θ0.

2. Sample c1 from g1
¡
c; θ0, u

¢
.

3. Sample θ∗ from h1 (θ
∗;u, c1) , where

h1 (θ
∗;u, c1) =

g1 (c1;θ
∗, u)R

g1 (c1;θ
∗, u) dθ∗

4. If θ∗ in S then θ1 = θ1∗ and go to step 9, else

5. Sample c2 from g2
¡
c1;θ

0, u, c1,θ
∗1¢

6. Sample θ∗2 from h2
¡
θ;u, c1,θ

∗1¢ where
h2
¡
θ;u, c1,θ

∗1¢ = g1 (·) g2 (·)R
g1 (·) g2 (·) dθ∗

7. If θ∗2 in S then θ0 = θ∗2 and go to 9, else ...

8. Repeat from step 2.

The distributions g1 (·) , g2 (·) , g3 (·) , ..., may depend on θ and u. A simple choice

for gi (·) could be the Normal density with mean θ0 and variance-covariance matrix Σ =
σ2Imatrix,where Imatrix is the identity matrix. Then, the distribution hi isN (c, (σ2/i) Imatrix) ,

where

c =
c1 + c2 + ...+ ci

i
.

As a result, the larger the number of points that are rejected the narrower the density

from which sample is drawn it becomes. Note that, above procedure leaves the density

of interest invariant (Neal, 2003).
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Chapter 6

A Bayesian Approach to Univariate

Stochastic Volatility Models

6.1 Introduction

Univariate stochastic volatility models have been under extensive investigation by many

authors during the last decades. From the view of classical statistics, Taylor (1986) used

a likelihood-based approach to estimate the parameters of the stochastic volatility model,

Melino and Turnbull (1990) and Andersen et al. (1999) used the method of moments,

while Nelson (1988), Harvey, Ruiz and Shephard (1994) Ruiz (1994) and Kim, Shephard

and Chib (1998) were based on quasi-maximum likelihood estimator. From the Bayesian

statistics point of view, a number of MCMC algorithms have been proposed that converge

to the posterior density of the parameters of stochastic volatility model. The existing

MCMC algorithms can be separated in two main categories. The single move MCMC

algorithms that update parameters one by one, and the block move MCMC algorithms

that update all or a block of parameters simultaneously. This chapter will be devoted

on the Bayesian perspective presenting at the same time the existing algorithms used in

the case of univariate stochastic volatility model.
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6.2 Existing MCMC Algorithms for the Stochastic

Volatility Model

6.2.1 Singe-Move Algorithms

Many single move MCMC algorithms, for sampling from the posterior density of the

stochastic volatility model, have been proposed in the literature. The main difference of

those algorithms can be traced on the way that are updating the volatilities ht. Note,

that under conjugate priors the rest parameters of the stochastic volatility model have

full posterior densities of standard form.

Initially, Jacquier, Polson and Rossi (1994) proposed a MCMC single move algorithm

for the case of stochastic volatility model based on the following form of the model

yt|ht ∼ N (0, ht) ,

ht|a, b, σ2h ∼ LN
¡
a+ b log ht−1, σ2h

¢
,

where the volatilities follow LogNormal distribution LN (·, ·). Based on standard con-
jugate prior π (b, σ2h) = π (b|σ2)π (σ2h) , where b =(a, b) , b|σ2 ∼ MN (b∗, σ2A−1) and

σ2 ∼ IG (n0, s
2
0) , Jacquier, Polson and Rossi (1994) construct the following MCMC

algorithm

1. Give initial values to the parameters b0, σ2
0

h , h
0
1, ..., h

0
T .

2. Sample b1|σ20h , h01, ..., h0T ∼MN (·, ·) .

3. Sample σ2
1

h |b1, h01, ..., h0T from ∼ IG (·, ·) .

4. Sample h1t ∼ f
³
ht|h/t,b1, σ21h

´
, where h/t = (h1, ..., ht−1, ht+1, ..., hT ) , for t =

1, ..., T.

5. Repeat from step 2.
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The above algorithm is consisted of Gibbs steps apart from step (4) where

the full conditional density is not of standard form. More specifically, the full

conditional density for the volatilities is

f
¡
ht|h/t,b, σ2h

¢ ∝ f
¡
ht|ht−1, ht+1,b, σ2h

¢
(6.1)

∝ f (yt|ht) f (ht|ht−1) f (ht+1|ht, )

∝ h−0.5t exp
©−0.5y2tÁht

ª
h−1t exp

(
−(lnht −mt)

2

2s2

)
,

where

mt =
a (1− b) + b (lnht−1 + lnht+1)

1 + b2
,

s2 =
σ2h
1 + b2

.

As a solution, Jacquier, Polson and Rossi (1994) proposed a Metropolis-

Hastings step to update the volatilities h0ts. As a proposal density they have

chosen an Inverse Gamma density. Jacquier, Polson and Rossi (1994) noticed

that the full conditional (6.1) is consisted of two terms, an Inverse Gamma

term and a LogNormal term. They approximated the LogNormal term by

matching the first and second moments of a LogNormal distribution to the

corresponding moments of an Inverse Gamma distribution. The result was

that the remaining Inverse Gamma term and the new Inverse Gamma term

(which is the result of the approximation of the LogNormal term) can be

combined to an Inverse Gamma density with parameters

n1 =
1− 2 exp (s2)

(1− exp (s2)) + 0.5 ,
s1 = (n1 − 1) exp

¡
mt + 0.5s

2
¢
+ 0.5y2t .

The proposed MCMC algorithm of Jacquier, Polson and Rossi (1994) using
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as proposal IG (n1, s1) for updating the volatilities is given bellow

1. Give initial values to the parameters b0, σ2
0

h , h
0
1, ..., h

0
T

2. Sample b1|σ20h , h01, ..., h0T ∼MN (·, ·) ,

3. Sample σ2
1

h |b1, h01, ..., h0T ∼ IG (·, ·) ,

4. Sample h∗t ∼ IG (n1, s1) and u ∼ Uniform (0, 1) . If u < q (h0t → h∗) then h1t = h∗;

else h1t = h0t , for t = 1, ..., T

5. Repeat from step 2.

Jacquier, Polson and Rossi (1994) stated that the acceptance probability in step 4 of

their algorithm is between 70% and 80%. Giakoumatos (1997) proposed a new candidate

density for the Metropolis-Hastings step in order to update volatilities h0ts. In detail,

he proposed the use of a dependent Metropolis-Hastings step with proposal density the

Normal distribution. Step 4 of the late algorithm become as following:

• Sample h∗t ∼ N
³
h0t ,

σ2h
(1+b2)

´
and u ∼ Uniform (0, 1) . If u < q (h0t → h∗) , then

h1t = h∗; else h1t = h0t , for t = 1, ..., T.

Moreover, Jacquier, Polson and Rossi (1999)- based on the above algorithm - pro-

posed Metropolis within Gibbs algorithms for other extensions of the univariate stochas-

tic volatility model.

Pitt (1997) argued that the MCMC algorithm of Jacquier, Polson and Rossi is not so

efficient in the way that updates volatilities and for this reason proposed a different way

of updating. Pitt (1997) concentrated on the following form of the stochastic volatility

model
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yt|· ∼ N
¡
0, z2 exp (ht)

¢
,

ht|· ∼ N
¡
b ∗ ht−1, σ2h

¢
,

h1|· ∼ N

µ
0,

σ2h
1− b2

¶
.

In order to update the log-volatilities, Pitt (1997) used the following Theorem that

has been proposed in the context of non-Gaussian State Space models. Note that the

stochastic volatility model is a member of the class of non-Gaussian state space models.

Let the non-Gaussian state space model

yt|· ∼ f (yt|ct + Ztht) ,

ht+1|· ∼ N (dt + Ttht, A) ,

h1|Y0 ∼ N
¡
h1|0, P1|0.

¢
.

Pitt (1997) and Carlin, Polson and Stoffer (1992) observed that the full conditional

density for ht can be written as

f
¡
ht|y,h/t

¢ ∝ f(yt|ht)f (ht|ht−1, ht+1) ,

where h/t = (h1, ..., ht−1, ht+1, ..., hT ) . The conditional prior density f (ht|ht−1, ht+1) dom-
inates the likelihood f(yt|ht). Therefore, Pitt (1997) focused on the approximation of this
density contrary to Jacquier, Polson and Rossi (1994), who focused on f(yt|ht), in their
algorithm for the stochastic volatility model and developed a rather inefficient MCMC.

The conditional prior density f (ht|ht−1, ht+1) of the above non-Gaussian state space
model follows N(µt, St), where mt is a linear combination of ht−1 and ht+1. Let the
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log-likelihood l (ht) = log f (yt|ht) and

l
0
(ht) =

∂l (ht)

∂ht
,

l
00
(ht) =

∂2l (ht)

∂ht∂h
0
t

.

The following theorem of Pitt (1997) can be used to find an approximate density for

f
¡
ht|y,h/t

¢
Theorem 10 Suppose St is non-singular and that l

00
(ht) is negative semi-defined for all

values of ht. Then, the following two results hold.

1. We can sample from ht|ht−1, ht+1, yt by making suggestions ht from

N
³
µt + Stl

0
(mt) , St

´
, (6.2)

which are accepted with probability

exp
n
l (ht)− l (mt)− l

0
(mt)

T (ht −mt)
o
, (6.3)

whatever the value of mt.

2. The probability of rejecting the suggestion made in (6.2) is minimized by selection

of mt as the mode of f (ht|ht−1, ht+1, yt) .

The above Theorem can be used in the case of the stochastic volatility model in order

to approximate the non-standard density

f(ht|·) ∝ f (yt|ht) f (ht|ht+1, ht−1)
exp (−0.5ht)

z
exp

µ
− 1

2z2
y2t exp (−ht)

¶
exp

½
− 1

2σ2h

£
(ht − bht−1)

2 + (ht+1 − bht)
2¤¾ .
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The prior conditional density is

f (ht|ht+1, ht−1) ∝ exp

½
− 1

2σ2h

£
(ht − bht−1)

2 + (ht+1 − bht)
2¤¾

∝ exp

µ
−1 + b2

2σ2h
(ht − µt)

2

¶
,

where µt = b (ht+1 + ht−1)Á (1 + b2). The log-likelihood takes the form

l (ht) = log f (yt|ht) ∝ −0.5ht − y2t
2z2

exp (−ht) .

Applying the results of the previous theorem we obtain

l
0
(ht) =

y2t
2z2

exp (−ht)− 0.5,

l
00
(ht) = − y2t

2z2
exp (−ht) < 0.

Therefore, ht|· can be drawn by sampling from N
³
µ∗t ,

σ2h
1+b2

´
,where

µ∗t = µt + 0.5
σ2h
1 + b2

½
y2t
2z2

exp (−µt)− 1
¾
.

The probability of acceptance is approximately

1 +
y2t
4z2

exp (−µt)
½

σ2h
1 + b2

+ (µt − µ∗t )
2

¾
.

Pitt (1997) states that the probability of acceptance is over 99% for most of the financial

datasets.

Moreover Pitt (1997) proposes a pseudo-dominating Metropolis-Hastings step (Tier-

ney, 1994) in order to update the log-volatilities h0ts. The proposal density for the
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Metropolis-Hastings step is N (mt, σ
∗2
t ) , where

mt =
σ∗2t
σ2t

µt +
σ∗2t
2

½
y2t
z2
exp (−µt) (1 + µt)− 1

¾
,

and

σ∗2t =
1 + b2

σ2h
+

y2t
2z2

exp(−µt).

In this case we sample h∗t from N (mt, σ
∗2
t ) and we accept it as a new value from f (ht|·)

with probability

min

·
f (h∗t |·)min {f (ht|·) , g (ht)}
f (ht|·)min {f (h∗t |·) , g (h∗t )}

, 1

¸
,

where g (z) ≡ N (mt, σ
∗2
t ) .

Apart from the way that volatilities are being updated, Pitt and Shephard (1999c)

proved that the analytical convergence rate for the volatilities is

4b2½
1+b2+σ2h

V ar(log ε2t)

¾2 .

6.2.2 Block-Move Algorithms

Apart from the single move algorithms, some authors are proposing algorithms that are

updating a block or all the parameters of the stochastic volatility model simultaneously.

Regarding the benefits of updating a block of parameters in the Bayesian analysis see

Smith and Roberts, (1993) and Liu, Wong and Kong (1994) among others. In the

context of time-series models, Fruhwirth-Schnatter (1994) and de Jong and Shephard

(1995) have suggested a number of block move algorithms. In this context, an interest

approach was introduced by Pitt (1997). A fixed number - knots - of log-volatilities are

randomly chosen to remain fixed for one sweep of the MCMC algorithm. Let k knots are
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selected κ =(κ1, κ2, ..., κk) corresponding to log-volatilities h/ = (hκ1, hκ2 , ..., hκk) . The

idea is to update simultaneously all the log-volatilities between two of the selected knots.

Pitt (1997) employed a Taylor expansion on the logarithm of the conditional density of

log-volatilities between two knots

log f (ht,k|ht−1, ht+k+1, yt, ..., yt+k) ,

where ht,k = (ht, ht+1, ..., ht+k) . The Taylor expansion took place around some prelim-

inary estimates, say bht,k = ³bht,bht+1, , ...,bht+k´ of ht,k. This expansion leads us to a
multivariate Normal density that can be used as proposal for sampling ht,k. As prelim-

inary estimates bht,k can be used the mode of the f (ht,k|ht−1, ht+k+1, yt, ..., yt+k) . The
desired mode can be calculated using the Newton-Raphson method.

As a consequence of the above method, a block of h0ts can be updated by using

Metropolis-Hastings step where the proposal is the multivariate Normal density resulting

from the Taylor expansion.

Pitt (1997) offered results by using the above block sampling for log-volatilities -

for some optimal number of knots - where the MCMC algorithm converges faster than

single-move algorithms.

Similarly, Taylor expansion can be applied to the full posterior density of the param-

eters of the stochastic volatility model and to lead us to a multivariate Normal density.

This multivariate Normal density is used by Pitt (1997) as a proposal to a Metropolis-

Hastings step that updates all the parameters and the log-volatilities of the stochastic

volatility model at once.

Kim, Shephard and Chib (1998) proposed another way to sample the log-volatilities

on a simultaneous manner. Their offset mixture method based on the feature of the

stochastic volatility model that can be transformed into a linear model if the logarithm

87



of the squares of yt observations is taken. In detail

yt = exp

µ
ht
2

¶
εt ⇒

log y2t = ht + log ε
2
t ,

where V ar (log y2t ) = 4.93.

Kim, Shephard and Chib (1998) approximated the term log ε2t using a mixture of

7 Normal densities with component probabilities π1, π2, ..., πk, means µi − 1.2704, for
i = 1, ..., 7 and variances σ21, σ

2
2, ..., σ

2
7. As a result, the transformed stochastic volatility

model takes the form

y∗t |ht, ωt = i, µi, σ
2
i ∼ N

¡
ht + µi − 1.2704, σ2i

¢
,

ht|a, b, ht−1, σ2h ∼ N
¡
a+ bht−1, σ2h

¢
,

p (ωt = i) = πi,

where y∗t = log (y2t + c) and c is an offset that is set by the authors c = 0.001. The

constants {πi, µi, σ2i ; i = 1, ..., 7} are selected to closely approximate the density log ε2t
via a non-linear least squares program. The following table contains the values of the

constants that Kim, Shephard and Chib (1998) proposed.

ω p (ω) µi σi

1 0.00730 -10.12999 5.79596

2 0.10556 -3.97281 2.61369

3 0.00002 -8.56686 5.17950

4 0.04395 2.77786 0.16735

5 0.34001 0.61942 0.64009

6 0.24566 1.79518 0.34023

7 0.25750 -1.08819 1.26261

Based on the above mixture of Normal densities, the log-volatilities can be sampled
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simultaneously from a multivariate Normal density. A new step is added in the algorithm

to sample the component of the normal mixture, which is straightforward. Finally, a

reweighting must be done on the MCMC sample so as to follow the exact posterior

density (see Kim, Shephard and Chib, 1998).
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Chapter 7

Auxiliary Variable Sampler and

Univariate Time-Varying Volatility

Models

7.1 Introduction

Many financial time series, such as stock returns and exchange rates, can be successfully

modeled by assuming that the error variance fluctuates over time. Thus, time-varying

volatility models can capture a usual phenomenon, common in financial time series,

the “volatility clustering”. The familiar modeling approaches are the Autoregressive

Conditional Heteroskedasticity (ARCH) models and their variants (Bollerslev, Engle and

Nelson 1994). An alternative to those models is given by the Stochastic Volatility models.

As a reference for recent descriptions of the stochastic volatility models see: Shephard

(1996) and Ghysels, Harvey and Renault (1996). Another model that draw attention

was the Unobserved ARCH model (Shephard, 1996), which belongs to a class of models,

introduced by Harvey, Ruiz and Sentana (1992). The unobserved ARCH model can be

classified as parameter-driven model, therefore, it is a stochastic volatility model.

In this chapter, Bayesian inference is adopted for the aforementioned time-varying
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volatility models. In addition, new easy to implement MCMC algorithms are proposed.

To achieve that, the Auxiliary Variable sampler is employed (Swendsen and Wang 1987)

and sets of latent variables are included in the full posterior density of each model such

as all the full conditional densities of the parameters of interest to be of known forms.

Still, in certain cases (unobserved ARCH model and stochastic volatility model), the

parameter space is transformed so as the resulting full conditional posterior densities are

simplified. The proposed MCMC algorithms are consisting of only Gibbs steps. This

emanated from the need to develop algorithms which are straightforward to use (unlike

Metropolis-Hastings, Gibbs sampling requires no tuning) and have better convergence

behavior than existing MCMC samplers.

7.2 Stochastic volatility model

7.2.1 Introduction

In this section, full Bayesian analysis of the stochastic volatility model (Taylor 1982,

Shephard 1996) is presented. The form of the stochastic volatility model is given by the

following hierarchical structure

yt|· ∼ N (0, aht) , (7.1)

ht|· ∼ LN
¡
β log ht−1, σ2

¢
.

where yt is the realization of the stochastic process at time t, ht, t = 1, ..., T are the

volatilities, a, β and σ2 are the hyperparameters of the model and LN (·, ·) is the Log-
Normal distribution. Restriction, 0 < β < 1 is imposed such as the series of volatilities to

be covariance stationary. This form of the model leads to a MCMC algorithm where some

of the full conditionals are not of standard form (see Jacquier et al., 1994; Giakoumatos

1997; Pitt 1997).

In the following section, the model (7.1) is written by the inclusion T latent variables
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u =(u1, ..., uT ) and a MCMC algorithm which is based only on Gibbs steps is proposed.

7.2.2 Bayesian Approach and the Auxiliary Variable Sampler

The model (7.1) can be rewritten using the following Theorem of the decomposition of

the LogNormal density.

Theorem 11 Suppose that ht|ut follows f (·) , where

f (ht|ut) = 1

2ht
√
u
IAt,

where

At =
©
ht : exp

¡
β log ht−1 −

√
u
¢ ≤ ht ≤ exp

¡
β log ht−1 +

√
u
¢ª

and u follows G
¡
3
2
, 1
2σ2

¢
. Then the marginal density of ht is the LogNormal density with

parameters β log ht−1 and σ2.

Proof. Just integrate out the latent variable ut.

Utilizing the above Theorem, the stochastic volatility model of (7.1) can be written

as

yt|· ∼ N (0,aht) , (7.2)

f
¡
ht|ut, β, ht−1, σ2i

¢
=

1

2ht
√
u
IAt, for t = 1, ..., T,

ut|· ∼ G

µ
3

2
,
1

2σ2

¶
, for t = 1, ..., T,

where

At = {exp (β log ht−1 −√ut) ≤ ht ≤ exp (β log ht−1 +√ut)} . (7.3)

Using non-informative priors for the parameters a, β, σ2, i.e. π (a, β, σ2) ∝ (aσ2)−1

and LogNormal prior for the h0, i.e. π (h0) ∝ (h0)−1 exp
n
−0.5 ¡ lnho

v

¢2o
, the joint pos-

terior distribution -known up to a constant- for the parameters of interest takes the

following form:
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f
¡
β,σ2, a, h0,h,u|y

¢ ∝ Ã
a(T/2)+1σ2

3T
2
+1h0

TY
t=1

³
h
3/2
t

´!−1
(7.4)

exp

(
−1
2

TX
t=1

y2t
aht

)
exp

(
−0.5

µ
lnho
v

¶2)

exp

(
−1
2

TX
t=1

ut
2σ2

)
TY
t=1

IAt.

where IAi is defined in (7.3).

The full conditional densities for the parameters of interest, based on the posterior

(7.4) is given below

• σ2|· ∼ IG

µ
3T
2
, 0.5

TP
t=1

ut

¶
.

• a|· ∼ IG

µ
T
2
, 0.5

TP
t=1

y2t
ht

¶
.

• ut|· ∼ exp
¡
1
2σ2

¢
IAu , where exp (·) is the exponential density,

Au =
©
ut : ut ≥ (log ht − β log ht−1)

2ª ,
for t = 1, ..., T.

• Marginalizing out (Chib and Carlin 1999) the latent parameters u the full condi-
tional of β is N (µ, s2) I (0, 1) , where

µ =

TP
t=1

log ht−1 log ht

TP
t=1

log h2t−1

s2 =
σ2

TP
t=1

log h2t−1

.
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• Marginalizing out (Chib and Carlin 1999) the latent parameter u1 the full condi-
tional of h0 is LN (µ, s2) , where

µ =
β ln (h1) v

2

σ2 + βv2

s2 =
σ2v2

σ2 + βv2
.

• The full conditional density of the volatilities h is given by

f (h|·) ∝ 1
TQ
t=1

h
3/2
t

exp

(
− 1
2a

TX
t=1

y2t
ht

)
TY
t=1

IAt. (7.5)

In order to handle the problem that the full conditional density of volatilities h is

not of standard form, some non− linear transformations of the volatilities are applied.

Firstly, note that

Theorem 12 If in the posterior density f (h|·) defined in (7.5) we perform the following
transformations kt = 1/

√
ht; for t = 0, ...T, the posterior density takes the form

[k|·] ∝ exp
(
− 1
2a

TX
t=1

y2t k
2
t

)
TY
t=1

IA∗t , (7.6)

where

A∗t =
©
exp

¡
0.5
¡
β log k2t−1 −

√
ut
¢¢ ≤ kt ≤ exp

¡
0.5
¡
β log k2t−1 +

√
ut
¢¢ª

, (7.7)

and k =(k1, ..., kT ) .

Proof. Note that the Jacobian of the above transformations is |J | ∝
TQ
t=1

k−3t . The re-

maining calculations are straightforward.
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Applying the previous Theorem the full conditional for the vector k =(k1, ..., kT ) is

truncated T− variate Normal density, MNT (µ,S)
TQ
t=1

IA∗t , where µ =(0, ..., 0)
0
,

S =


a
y21

0 · · · 0

0 a
y22

· · · 0
...

...
. . .

...

0 0 · · · a
y2T

 ,

and A∗t is give in (7.7) .

Because of the difficulty to sample from the above truncated multivariate Normal

distribution we sample from the univariate density of each kt, t = 1, ..., T. In detail

• k1|· ∼ N
³
0, a

y21

´
I(L,U), where

L =

 max
n
0, exp

¡−0.5 ¡β log h0 +√u1¢¢ , exp³ 1
2β

¡
log k22 −

√
u2
¢´o

, if β > 0

max
n
0, exp

¡−0.5 ¡β log h0 +√u1¢¢ , exp³ 1
2β

¡
log k22 +

√
u2
¢´o

, if β < 0
,

U =

 min
n
exp

¡−0.5 ¡β log h0 −√u1¢¢ , exp³ 1
2β

¡
log k22 +

√
u2
¢´o

, if β > 0

min
n
exp

¡−0.5 ¡β log h0 −√u1¢¢ , exp³ 1
2β

¡
log k22 −

√
u2
¢´o

, if β < 0
.

• kt|· ∼ N
³
0, a

y2t

´
I(L,U), for t = 2, ..., T − 1, where

L =

 max
n
0, exp

¡
0.5
¡
β log k2t−1 −

√
ut
¢¢

, exp
³
1
2β

¡
log k2t+1 −√ut+1

¢´o
, if β > 0

max
n
0, exp

¡−0.5 ¡β log k2t−1 +√ut¢¢ , exp³ 1
2β

¡
log k2t+1 +

√
ut+1

¢´o
, if β < 0

,

U =

 min
n
0, exp

¡−0.5 ¡β log k2t−1 −√ut¢¢ , exp³ 1
2β

¡
log k2t+1 +

√
ut+1

¢´o
, if β > 0

min
n
0, exp

¡−0.5 ¡β log k2t−1 −√ut¢¢ , exp³ 1
2β

¡
log k2t+1 −√ut+1

¢´o
, if β < 0

.
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• kT |· ∼ N
³
0, a

y2T

´
I(L,U), for t = 2, ..., T − 1, where

L = max
©
0, exp

¡
0.5
¡
β log k2t−1 −

√
ut
¢¢ª

U = min
©
0, exp

¡−0.5 ¡β log k2t−1 −√ut¢¢ª .
In the end of each sweep of the algorithm we re-transform kt to ht using the reverse

transformation ht = 1/k
2
t ; for t = 0, ...T,

7.2.3 Some Applications

The above algorithm for the estimation of the stochastic volatility model parameters’ is

applied to two series of data sets. Both of them are consisted of 844 daily exchange rates

multiplied by 10000. In detail, the daily exchange rate of the US dollar (USD) and the

Japanese Yen (JPY) with respect to the Greek Drachma (GRD) are used (Figure 7-1).

The first 100000 iterations of the algorithm were dropped as burn-in and 1 sample point

is kept every 500 iterations so as the final samples, that are consisting of 1000 values each,

to be approximately independent and identically distributed samples from the marginal

densities of the parameters of interest.

The final posterior samples were checked for convergence to the limiting distribu-

tion by the criteria of Geweke(1992), Raftery and Lewis (1992) and Heidelberger and

Welch (1983). Apart from this result, the subsampling diagnostic (see: Section 4.3 and

Giakoumatos et al., 1999) was used in order the convergence to be checked. This cri-

terion was applied to the initial 100000 iterations of each chain by setting: a = 0.05,

t = 0.90, d = 0.999. Note that, the subsampling diagnostic is considered by its authors

(Giakoumatos, Vrontos, Dellaportas and Politis, 1999) as a ‘very conservative’ one.

Table 7.1 presents the number of lagged values where the autocorrelation dies out for

each series of data. Graphically, these results are presented in Figure 7-2

97



Time

12/16/1993 12/16/1994 12/16/1995 12/16/1996

USD/GRD exchange rate

Time

12/16/1993 12/16/1994 12/16/1995 12/16/1996

JPY/GRD exchange rate

Figure 7-1: Exchange Rates Series

USD JPY
a 34 18
b 195 85
σ2 134 170

Table 7.1: Autocorrelation function results for the parameters of the SV model
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Figure 7-2: Autocorrelation function plots for the parameters of the SV model
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Parameters Mean Variance
a 19.82866 2.23853
β 0.4693494 0.01269
σ2 0.4659143 0.00896

Table 7.2: Posterior Statistics for the papameters of the SV model for USD

Results for USD

In the case of stochastic volatility model as this applied to USD, Figure 7-3 presents

the 1000 iterations of the MCMC algorithm for each parameter of interest. Based on

this i.i.d. sample, the posterior mean and variance of the parameters a, β and σ2 are

estimated (see Table 7.2).

These posterior summary statistics indicate that the USD series is ’weakly’ volatility

persistent (β = 0.4693494). The posterior histograms of the parameters a, β and σ2 are

presented in Figure 7-4.

As far as the convergence of the Markov chain is concerned, the subsampling diag-

nostic points out that the proposed algorithm needs approximately 25000 iterations to

get in the target distribution. The results of the diagnostic are presented in Figure 7-5.
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Figure 7-3: MCMC output for parameters of SV for USD
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Figure 7-4: Posterior Histograms for the parameters of SV for USD
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Subsampling Diagnostic for USA
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Figure 7-5: Subsampling diagnostic plot for USD

Parameters Mean Variance
a 21.80848 2.336953
β 0.430045 0.009154
σ2 0.403155 0.006299

Table 7.3: Posterior Statistics for the papameters of the SV model for JPY

Results for JPY

Figure 7-6 presents the 1000 iterations of the MCMC algorithms for each parameter of

interest when the stochastic volatility model applied to the JPY. Based on this i.i.d.

sample, the posterior mean and variance of the parameters are estimated. The Table 4.3

presents these estimates.

Based on these posterior summary statistics, it can be concluded that the JPY series is

’weakly’ volatility persistent (β = 0.430045). The posterior histograms of the parameters

a, β and σ2 are presented in Figure 7-7.

Considering the convergence of the Markov chain, the subsampling diagnostic points
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Figure 7-6: MCMC output for parameters of SV for JPY
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Figure 7-7: Posterior Histograms for the parameters of sv for JPY
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out that the proposed algorithm needs approximately 32000 iterations to get in the target

distribution. The results of the diagnostic are presented in Figure 7-8.

Subsampling Diagnostic for JPY

iterations
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00

Figure 7-8: Subsampling diagnostic plot for JPY
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7.3 Unobserved ARCH model

7.3.1 Introduction

The Unobserved ARCH model has been presented by Shephard (1996). The ARCH

components in this model are observed with disturbances. The form of this model can

be written using the following hierarchical structure of conditional densities:

yt|ft, σ2 ∼ N
¡
ft, σ

2
¢
, (7.8)

ft|ft−1, α, b, f0 ∼ N (0, ht) ,

ht = α+ b · f2t−1.

where y1, ..., yT is a realization of the process, ft is the unobserved ARCH component at

time t, f0 is the initial state or the “history” of the unobserved components and N (·, ·)
is the Normal distribution. To obtain ht > 0, the parameters a and b are restricted to be

positive. The additional restriction 0 < b ≤ 1 is placed so that the ARCH component of
the model to be covariance stationary (Engle 1982). Note that the unobserved component

ft is not measurable with respect to the available information at time t, something which

characterizes this class of models. The unconditional and conditional variances of yt

are given by V ar (yt) = σ2 + aÁ (1− b) and V ar (yt|yt−1, a, b) = σ2 + ht. Therefore, the

stochastic process yt can be considered to have an underline variance on which it is added

the variability which is caused by the effect of volatility clustering.

We now proceed by investigating the behavior of the squares of the returns of the

unobserved ARCH model, recalling that
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Theorem 13 Let yt follow an unobserved ARCH(p) model of the form

yt = ft + σet,

ft = ut
p
ht,

ht = α+

pX
i=1

bi · f2t−i,

where et, ut ∼ N (0, 1) . Then, y2t follows a non-Gaussian ARMA(p,p) process.
Proof.

y2t = y2t − σ2 + σ2 = f2t + kt + σ2, (7.9)

where kt = σ2e2t + 2ftσet − σ2. The ARCH component in (7.9) follows an AR(p) process

since

f2t = f2t + ht − ht = a+

pX
i=1

bi · f2t−i + zt,

where zt = f2t − ht. Therefore, zt + a = b (B) f2t , where b (·) is the pth degree polynomial
(b (ξ) = 1− b1ξ − · · ·− bpξ

p) and B is the backward shift operator. Then, (7.9) obtains

b (B) y2t = b (B) f2t + b (B) kt +

Ã
1−

pX
i=1

bi

!
σ2

=

Ã
1−

pX
i=1

bi

!
σ2 + a+ wt

where wt = b (B) kt+zt, and y2t is an ARMA(p, p) process since wt is an MA (p) process

as a sum of an MA (p) process and a white noise.
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7.3.2 Bayesian Approach and the Auxiliary Variable Sampler

The posterior density of the parameters of the model (7.8) can be extracted via Bayes

theorem, by

π
¡
a, b, σ2,f0, f |y

¢ ∝ TY
t=1

¡
π
¡
yt|ft, σ2

¢
π (ft|ft−1, a, b)

¢
π
¡
a, b, σ2, f0

¢
. (7.10)

The first two terms in the above product are derived from the hierarchical structure in

(7.8) and the last term, π (a, b, σ2, f0) , is the joint prior density of a, b, σ2 and f0. These

parameters are assumed a priori independent and we choose improper priors for the a, b,

σ2 and a vague Normal density N (0, v) for f0, so that the joint prior density takes the

form π (a, b, σ2, f0) ∝ (a · σ2)−1 exp {−0.5f20Áv} . Using the above joint prior density, the
joint posterior density (7.10) takes the form

π
¡
a, b, σ2,f0, f |y

¢ ∝ 1
TQ
t=1

p
a+ bf2t−1

exp

(
−1
2

TX
t=1

µ
f2t

a+ bf2t−1

¶)
(7.11)

1

aσ2
T+2
2

exp

(
−1
2

Ã
1

σ2

TX
t=1

(yt − ft)
2 +

f20
v

!)
.

The above posterior (7.11) is heavily parameterized and the full posterior conditional

densities (i.e. the full posterior conditional density means, the posterior density of one

parameter condition on all the remaining parameters) are not of standard forms. There-

fore, the construction of the MCMC algorithm is not at all simple. In order to handle

this problem, some non − linear transformations of the parameter space are adopted.

Firstly, note that

Theorem 14 If in the posterior density π (a, b, σ2,f0, f |y) defined in (7.11) we perform
the following transformations g =

p
a/b and wt =

p
b/aft; for t = 0, ...T, the posterior
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density takes the form

π
¡
g, b, σ2,w|y¢ ∝ 1

TQ
t=1

p
1 + w2t−1

exp

(
− 1
2b

TX
t=1

w2t¡
1 + w2t−1

¢) (7.12)

1

σ2
T+2
2 b

T
2

exp

(
−1
2

Ã
1

σ2

TX
t=1

(yt − gwt)
2 +

(gw0)
2

v

!)
,

where w =(w0, ..., wT ) .

Proof. Note that the Jacobian of the above transformations is |J | = 2bgT+2. The

remaining calculations are straightforward.

By using Theorem 14, the resulting posterior density (7.12) has full conditional den-

sities of a rather convenient form. In particular,

• σ2|· ∼ IG
µ

T
2
, 1
2

TP
t=1

(yt − gwt)
2

¶
, where IG (a, b) denotes the Inverse Gamma den-

sity with mean b/ (a− 1); the notation |· implies conditioning on all the remaining
parameters.

• [b|·] ∼ IG
µ

T−2
2
, 1
2

TP
t=1

w2t
1+w2t−1

¶
I (b ≤ 1) , where I (·) is the indicator function.

• g|· ∼ N (m,s) I (g ≥ 0) , where m =

µ
v

TP
t=1

wtyt

¶
Á
µ
σ2w20 + v

TP
t=1

w2t

¶
and s =

(σ2v)Á
µ
σ2w20 + v

TP
t=1

w2t

¶
.

• π (w0|·) ∝ ND
³
0, v

g2

´
1√
1+w20

exp

½
− 1
2b

w21

(1+w20)

¾
.

• π (wt|·) ∝ ND (mt, s
2
t )

1√
1+w2t

exp

½
− 1
2b

w2t+1

(1+w2t )

¾
, for t = 1, ..., T − 1.

• wT |· ∼ N (mT , s
2
T ) ,
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where ND (·, ·) denotes the probability density function of the Normal distribution
and mt and s2t are given by

mt =
ytgb

¡
1 + w2t−1

¢
gb
¡
1 + w2t−1

¢
+ σ2

, s2t =
σ2b

¡
1 + w2t−1

¢
g2b
¡
1 + w2t−1

¢
+ σ2

. (7.13)

Again, the full conditional densities of wt, for t = 0, ..., T−1, are not of known forms. One
way to deal with that, is to use Metropolis-Hastings steps (Hastings 1970; Metropolis,

Rosenbluth, Rosenbluth, Teller and Teller 1953) which allow us to sample from non-

standard densities. Giakoumatos, Dellaportas and Politis (2004a) tried a random walk

Metropolis-Hastings step with a Normal proposal density with variance given by s2t .

For a series of data sets that analyzed in this Thesis, the probability of acceptance is

approximately 0.5, a value which has been considered satisfactory by Chib and Greenberg

(1995a).

However, note that the full conditional densities of wt, t = 0, ..., T −1, can be written
as

π (wt|·) ∝ N (mt,s
2
t )Ψ (wt) , t = 0, ..., T − 1

where Ψ (wt) is a function of wt. In that case, Giakoumatos, Dellaportas and Poli-

tis (2004a) followed Chib and Greenberg (1994) (see also Chib and Greenberg 1995b)

and sample from these full conditional densities by a Metropolis-Hastings step using

as proposal density N (mt,s
2
t ) . In this case the probability of acceptance reduces to

min {1,Ψ (w0t)ÁΨ (wt)} , where w0t is the proposal value.
Another way to sample from wt, t = 0, ..., T − 1, is to use auxiliary variable sampling

techniques (Swendsen and Wang 1987; Edwards and Sokal 1988; Besag and Green 1993;

Higdon 1998; Damien, Wakefield and Walker 1999; Neal 2003). The way that this can

be achieved becomes evident in the next section.
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7.3.3 Usage of the Auxiliary Variable Sampling

In this section the auxiliary variable sampler is utilized to construct an MCMC algorithm

from which a sample can be easily drawn from the posterior of the Unobserved ARCH

model. The parameter space is expanded, introducing 2T auxiliary variables in such a

way that the resulting MCMC algorithm to consist of only Gibbs steps. To construct the

proposed algorithm the following Theorem is used.

Theorem 15 If we include 2T positive latent variables u =(u1, ..., uT ) and k =(k1, ..., kT )

in the posterior density (7.12)such that the resulting joint density is given by

π
¡
g, b, σ2,w,u,k|y¢ ∝ 1

σ2
T+2
2 b

T
2

Ã
TY
t=1

I

Ã
ut ≤ 1p

1 + w2t−1

!!
Ã

TY
t=1

I

Ã
kt ≤ exp

Ã
− 1
2b

w2t¡
1 + w2t−1

¢!!!

exp

(
−1
2

Ã
1

σ2

TX
t=1

(yt − gwt)
2 +

(gw0)
2

v

!)
,

then, the marginal density π (g, b, σ2,w|y) is given by (7.12).

The above Theorem guarantees that a MCMC algorithm which obtains samples

from π (u,k, g, b,w, σ2|y) obtains also samples from π (g, b,w, σ2|y) . To utilize The-
orem 15, we need to further elaborate on the resulting full conditional densities of

π (g, b, σ2,w,u,k|y) . In fact, it is readily evident that it is more convenient to use some
forms of conditional densities appropriately marginalised over some parameters (Chib

and Carlin 1999). In particular, to sample from π (g, b, σ2,w,u,k|y) we use the full
conditional densities of g and σ2, which are presented in section 7.3.2, because they are

independent of u and k. For the remaining of the parameters, the following updating

steps are used:

• Instead of sampling from π (b|·) ≡ π (b|k,w) sampling procedure is taking place
from
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π (b|w) ≡ IG
µ

T−2
2
, 1
2

TP
t=1

w2t
1+w2t−1

¶
I (b ≤ 1).

• π (ut|·) ≡ U
µ
0, 1√

1+w2t−1

¶
, for all t = 1, ..., T.

• π (kt|·) ≡ U
µ
0, exp

½
− w2t
2b(1+w2t−1)

¾¶
, for all t = 1, ..., T.

• π (w0|·) ≡ N (0,v) I
µ
u1 ≤ 1√

1+w20

¶
· I
µ
k1 ≤ exp

½
− w21
2b(1+w20)

¾¶
.

• Instead of sampling from π (wt|·) ≡ π (wt|ut+1, kt, kt+1, g, b,wt−1, wt+1, σ
2,y) ; for

t = 1, .., T − 1, sampling is taking place from
π (wt|ut+1, kt+1, g, b,wt−1, wt+1, σ

2,y) ≡
N (mt, s

2
t ) I

µ
ut+1 ≤ 1√

1+w2t

¶
I

µ
kt+1 ≤ exp

½
− w2t+1

2b(1+w2t )

¾¶
, where mt and s2t are

defined in (7.13).

• Instead of sampling from π (wT |·) ≡ π (wT |kT , g, b,wT−1, σ2,y), sampling is taking

place from

π (wT |g, b,wT−1, σ2,y) ≡ N (mT , s
2
T ) , where mT and s2T are defined in (7.13).

In order to sample from the above truncated Normal density, rejection sampling

(Gelfand, Smith and Lee 1992) is used. On the other hand, the method of Robert (1995)

could be used. For the full conditional density of b, which is truncated Inverse Gamma

density, the AV sampler is used, introducing a latent variable; see section 10.6.

7.3.4 Some Applications

The aforementioned algorithm for the estimation of the parameters of the unobserved

ARCH model is applied to two series of data sets. Both of them are consisted of 844

daily exchange rates multiplied by 10000. In detail, the daily exchange rate of the US

dollar (USD) and the Japanese Yen (JPY) with respect to the Greek Drachma (GRD) are

used (Figure 7-1, page 98). The first 50000 iterations of the algorithm were dropped as

burn-in and 1 sample point is kept every 500 iterations such as the final samples, that are
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USD JPY
a 190 270
b 140 290
σ2 210 120

Table 7.4: Autocorrelation function results for the parameters of the unobserved ARCH
model

consisting of 5000 values, to be approximately, independent and identically distributed

samples from the marginal densities of the parameters of interest.

The final posterior samples were checked for convergence to the limiting distribution

by the criteria of Geweke (1992), Raftery and Lewis (1992) and Heidelberger and Welch

(1983). Apart from this result, the subsampling diagnostic (see: section 4.3 and Giak-

oumatos et al., 1999) was used in order the convergence to be checked. This criterion was

applied to the initial 50000 iterations of each chain by setting: a = 0.05, t = 0.90, d =

0.999. Note that, the subsampling diagnostic is considered by its authors (Giakoumatos

et al., 1999) ‘very conservative’.

Table 7.4 presents the number of lagged values where the autocorrelation dies out for

each series of data. Graphically, these results are presented in Figure 7-9.

Finally, note that Giakoumatos, Dellaportas and Politis (2004a) compared the auxil-

iary variable algorithm with respect to the Metropolis-Hastings algorithm and the Chib

& Greenberg algorithm for the unobserved ARCH model and they found enough evi-

dences that the auxiliary variable MCMC algorithm converges faster than the other two

algorithms.
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Figure 7-9: Autocorrelation function plots for the parameters of the unobserved ARCH
model
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Parameters Mean Variance
a 2.666473 1.041731
b 0.9055209 0.006319529
σ2 14.61337 3.401016

Table 7.5: Posterior Statistics for the papameters of the unobserved ARCH model for
USD

Results for USD

In the case of unobserved ARCH model as this applied to USD, Figure 7-10 presents

the 5000 iterations of the MCMC algorithm for each parameter of interest. Based on

this i.i.d. sample, the posterior mean and variance of the parameters of the model are

estimated. The following Table presents these estimates.

These posterior summary statistics indicate that the USD series is ’strongly’ volatility

persistent (b = 0.9055209). The posterior histograms of the parameters a, b and σ2 are

presented in Figure 7-11.

For the convergence of the Markov chain, the subsampling diagnostic points out

that the proposed algorithm needs approximately 27500 iterations to get in the target

distribution. The results of the diagnostic are presented in Figure 7-12.
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Figure 7-10: MCMC output for parameters of unobserved ARCH for USD
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Figure 7-11: Posterior Histograms for the parameters of unobserved ARCH for USD
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Figure 7-12: Subsampling diagnostic plot for USD

Parameters Mean Variance
a 4.76157 8.224736
β 0.7497178 0.02615015
σ2 14.37208 10.78908

Table 7.6: Posterior Statistics for the papameters of the unobserved ARCH model for
JPY

Results for JPY

Figure 7-13 presents the 1000 iterations from the MCMC for each parameter of interest

when the unobserved ARCH model applied to the JPY. Using this i.i.d. sample, the

posterior mean and variance of the parameters of the model are estimated (see Table

7.6).

These posterior summery statistics indicate that the JPY series is volatility persistent

(b = 0.7497178). The posterior histograms of the parameters a, β and σ2 are presented

in Figure 7-14.

For the convergence of the Markov chain, the subsampling diagnostic points out
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Figure 7-13: MCMC output for parameters of unobserved ARCH for JPY

120



0 5 10 15 20 25

0
50

0
10

00
15

00

Posterior Histogram for a

0.2 0.4 0.6 0.8 1.0
0

10
0

20
0

30
0

40
0

50
0

60
0

Posterior Histogram for b

0 5 10 15 20 25

0
20

0
40

0
60

0
80

0
10

00
12

00

Posterior Histogram for s^2

Figure 7-14: MCMC output for parameters of unobserved ARCH for JPY
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that the proposed algorithm needs approximately 26500 iterations to get in the target

distribution. The results of the diagnostic are presented in Figure 7-15.
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Figure 7-15: Subsampling diagnostic plot for JPY
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7.4 ARCH model

7.4.1 Introduction

In this section an auxiliary variable MCMC algorithm is proposed in order to take sample

from the posterior density of the parameters of ARCH(1) model (Engle, 1982). The

ARCH(1) model can be written as

yt|a0, a1,yt−1 ∼ N
¡
0, σ2t

¢
, (7.14)

σ2t = a0 + a1y
2
t−1,

where yt is the time series at time t, a0, a1 are the parameters of interest and yt−1 is the

vector of information up to time t− 1,i.e. yt = (y1, y2, ..., yt−1). Restrictions 0 < a1 < 1

and a0 > 0 are imposed to prevent the nonnegativity of the conditional variance and

ensure that the ARCH(1) process is covariance stationary (Engle, 1982).

In the next section an easy to construct and fast to converge MCMC algorithm is

proposed for the aforementioned model. This MCMC algorithm is based only on Gibbs

steps.

Monte Carlo methods for the analysis of the ARCH models have been also proposed

by Geweke (1989a, 1989b), Polasek and Muller (1995) and Vrontos (2001).

7.4.2 Bayesian Approach and the Auxiliary Variable Sampler

Using non-informative priors for the parameters of interest, π (a0, a1) ∝ a−10 , the joint

posterior distribution -known up to a constant- for the parameters a0 and a1 of model

(7.14) takes the following form:

f (a0, a1|yT ) ∝
Ã
a0

TY
i=1

q
a0 + a1y2t−1

!−1
exp

(
−0.5

TX
i=1

y2t
a0 + a1y2t−1

)
. (7.15)

It is obvious from the above posterior density that the full conditional densities for
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a0 and a1 are not of standard forms, therefore Gibbs algorithm cannot be applied here.

Metropolis-Hastings algorithm can be used (Metropolis et al., 1953; Hastings, 1970) but

as noted in previous sections Metropolis-Hastings requires a lot of tunning for the proposal

density. On the other hand, the product auxiliary variable sampler can be utilized in such

a way that constructs an easy to apply algorithm with only Gibbs steps. In the following

Theorem 2T + 1 auxiliary variables are introduced in the posterior density (7.15) such

as the resulting full conditional densities for a0 and a1 to be Uniforms.

Theorem 16 Let the posterior density given by (7.15) . If we include 2T + 1 positive

latent variables w, u =(u1, ..., uT ) and k =(k1, ..., kT ) in (7.15)such as the resulting joint

density for a0, a1, w,u and k to be given by

f (a0, a1, w,u,k|y) ∝ exp
(
−0.5

TX
i=1

ut

)
I

µ
w <

1

a0

¶
(7.16)

TY
i=1

½
I

µ
ut >

y2t
a0 + a1y2t−1

¶¾
TY
i=1

½
I

µ
kt < 1Á

q
a0 + a1y2t−1

¶¾
.

then, the marginal density f (a0, a1|y) is given by (7.15).

Proof: It is enough to integrate out all the latent parameters from the resulting
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posterior density (7.16)

f (a0, a1|y) =
Z
w

Z
u1

· · ·
Z
uT

Z
k1

· · ·
Z
kT

f (a0, a1, w,u,k|y) dwdu1 · · · duTdk1 · · · dkT

=

1/a0Z
0

dw

1Á
√

a0+a1y20Z
0

dk1 · · ·
1Á
√

a0+a1y20Z
0

dkT

∞Z
y21

a0+a1y
2
0

exp {−0.5u1} du1 · · ·
∞Z

y2
T

a0+a1y
2
T−1

exp {−0.5uT} duT

=

Ã
a0

TY
i=1

q
a0 + a1y2t−1

!−1
exp

(
−0.5

TX
i=1

y2t
a0 + a1y2t−1

)
.¥

Using the posterior density (7.16) an MCMC algorithm which is consisted only of

Gibbs steps can be easily constructed. In detail, the proposed algorithm is consisted of

the following steps

1. Give initial values a00, a
0
1.

2. Sample ut|a00, a01,y ∼ exp onential (0.5) I
³
ut >

y2t
a00+a

0
1y
2
t−1

´
, for all t = 1, ..., T.

3. Sample kt|a00, a01,y ∼ U
¡
0, 1Á

p
a00 + a01y

2
t−1
¢
, for all t = 1, ..., T.

4. Sample w|a00∼ U
³
0, 1

a00

´
.

5. Sample a10|a01,y,u,k,w ∼ U (l,m) ,

where l = max
n
max

n
y2t
ut
− a01y

2
t−1
o
, {0}

o
and

m = min
n
min

n
1
k2t
− a01y

2
t−1
o
, {1/w} , {1− a01}

o
.

6. Sample a11|a10,y,u,k,w ∼ U (l,m) ,where l = max
n
max

n³
y2t
ut
− a10

´
Áy2t−1

o
, {0}

o
and m = min

n
min

n³
1
k2t
− a10

´
Áy2t−1

o
, {1− a10}

o
.

7. Repeat from step 2.
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USD JPY
a0 490 600
a1 450 360

Table 7.7: Autocorrelation function results for the parameters of the ARCH model

Note that the above full conditional densities are Uniforms for a0, a1,k,w and trun-

cated exponential for k therefore it is easy to sample from them using standard procedures

(reference for uniform) for Uniforms and following Damien et al. (1999) for truncated ex-

ponential. Moreover the above algorithm can be easily extended for higher order ARCH

models.

7.4.3 Some Applications

The algorithm for ARCH(1) model that was described in the previous section is applied to

two series of data sets. Both of them are consisted of 844 daily exchange rates (multiplied

by 10000). These concern the daily exchange rate of the US dollar (USD) and the

Japanese Yen (JPY) with respect to the Greek Drachma (GRD) (Figure 7-1, page 98).

The initial 50000 iterations from each chain are dropped as burn-in and 1 sample

point every 600 iterations is kept so as the final samples, that are consisting of 5000

iterations, to be approximately independent and identically distributed samples from

the marginal densities of the parameters of interest of each exchange rate. The final

samples of 5000 iterations were checked for convergence to the limiting distribution by

the criteria of Geweke (1992), Raftery and Lewis (1992) and Heidelberger and Welch

(1983). Apart from this result, the subsampling diagnostic was applied in order to check

the convergence. This criterion was applied to the initial 50000 iterations of each chain

(a = 0.05, t = 0.90, d = 0.999) . It has to be mentioned that, the subsampling diagnostic

is considered by its authors (Giakoumatos, Vrontos, Dellaportas and Politis, 1999) ‘very

conservative’.

Table 7.7 presents the number of lagged values where the autocorrelation dies out for

each series of data. Graphically, these results are presented in Figure 7-16.
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Figure 7-16: Autocorrelation function plots for the parameters of the ARCH model
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Parameters Mean Variance
a0 23.33826 1.927203
a1 0.15366 0.002395

Table 7.8: Posterior Statistics for the papameters of the ARCH(1) model for USD

Results for USD

Figure 7-17 presents the 5000 iterations of the MCMC algorithm for each parameter of

interest for the case of ARCH(1) model applied to the USD. Based on this i.i.d. sample,

the posterior mean and variance of the parameters of the model are estimated. The Table

7.8 presents these estimates.
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Figure 7-17: MCMC output for parameters of ARCH(1) for USD

These posterior summary statistics indicate that the USD series is “weakly” volatility

persistent. The posterior histograms of the parameters a0 and a1 are presented in Figure

7-18.
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Figure 7-18: Posterior Histograms for the parameters of ARCH(1) for USD

For the convergence of the Markov chain, the subsampling diagnostic points out

that the proposed algorithm needs approximately 29000 iterations to get in the target

distribution. The results of the diagnostic are presented in Figure 7-19.
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Figure 7-19: Subsampling diagnostic plot for the USD

Parameters Mean Variance
a0 23.26966 1.859893
a1 0.16612 0.002317

Table 7.9: Posterior Statistics for the papameters of the ARCH(1) model for JPY

Results for JPY

Figure 7-20 presents the 5000 iterations of the MCMC algorithm for each parameter of

interest for the case of ARCH(1) model applied to the JPY. Based on this i.i.d. sample,

the posterior mean and variance of the parameters are estimated. The Table 7.9 presents

these estimates.

Based on these posterior summary statistics, it can be concluded that the USD series

is “weakly” volatility persistent. The posterior histograms of the parameters a0 and a1

are presented in Figure 7-21.

For the convergence of the Markov chain, the subsampling diagnostic points out

that the proposed algorithm needs approximately 30000 iterations to get in the target
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Figure 7-20: MCMC output for parameters of ARCH(1) for JPY
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Figure 7-21: Posterior Histograms for the parameters of ARCH(1) for JPY
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distribution. The results of the diagnostic are presented in Figure 7-22.
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Figure 7-22: Subsampling diagnostic plot for the JPY
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7.5 GARCH models

7.5.1 Introduction

In this section an auxiliary variable algorithm is proposed in order to take sample from

the posterior density of the parameters of GARCH(1, 1) model (Bollerslev, 1986). The

GARCH(1, 1) model can be written as

yt|a0, a1, b1,yt−1 ∼ N
¡
0, σ2t

¢
, (7.17)

σ2t = a0 + a1y
2
t−1 + b1σ

2
t−1,

where yt is the time series at time t, a0, a1, b1 are the parameters of interest and yt−1

is the vector of information up to time t − 1,i.e. yt = (y1, y2, ..., yt−1). Sufficient, but

not necessary conditions such that σ2t > 0 for all t are a0 > 0, a1 ≥ 0, and b1 ≥ 0. An
additional restriction is imposed, a1 + b1 < 1, to ensure that yt is covariance stationary

(Bollerslev (1986), Theorem 1).

A Bayesian analysis of GARCH model using other MCMC algorithms has been also

proposed by Bauwens and Lubrano (1998), Muler and Pole (1999), Bos, Mahieu and van

Dijk (1999), Vrontos, Dellaportas and Politis (2000).

7.5.2 Bayesian Approach and the Auxiliary Variable Sampler

Using non-informative priors for the parameters of interest, π (a0, a1, b1) ∝ a−10 , the joint

posterior distribution -known up to a constant- for a0, a1 and b1 takes the following form:

f (a0, a1, b1|y) ∝
Ã
a0

TY
i=1

q
a0 + a1y2t−1 + b1σ2t−1

!−1
(7.18)

exp

(
−0.5

TX
i=1

y2t
a0 + a1y2t−1 + b1σ2t−1

)
.

The full conditional densities for a0, a1 and b1 are not of standard forms, therefore
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Gibbs algorithm cannot be applied here. In order to handle this problem the simple aux-

iliary variable sampler is adopted such as the resulting MCMC algorithm to be consisted

of only Gibbs steps. In the following Theorem one auxiliary variable is introduced in the

posterior density (7.18) such as the resulting full conditional densities for a0, a1 and b1

to be of standard forms.

Theorem 17 Let the posterior density given by (7.18) . If we include one positive latent

variables u, in (7.18)such as the resulting joint density for a0, a1, b1 and u to be given by

f (a0, a1, b1, u|y) ∝ I (u < f (a0, a1, b1|y)) (7.19)

I

u <

Ã
TY
t=1

p
σ2t

!−1
exp

(
−0.5

TX
i=1

y2t
σ2t

)
.

 .

then, the marginal density f (a0, a1, b1|y) is given by (7.18).

Proof: It is enough to integrate out w from the resulting posterior density (7.19)

f (a0, a1, b1|y) =
Z
u

f (a0, a1, b1, u, |y) du =
f(a0,a1,b1|y)Z

0

du

=

Ã
a0

TY
i=1

q
a0 + a1y2t−1 + b1σ2t−1

!−1

exp

(
−0.5

TX
i=1

y2t
a0 + a1y2t−1 + b1σ2t−1

)
.¥

Using the posterior density (7.19) an MCMC algorithm which is consisted only of

Gibbs steps can be easily constructed. In detail, the proposed algorithm is consisted of

the following steps

1. Give initial values a00, a
0
1, b

0
1.

2. Sample u1|a00, a01,b01,y ∼ U (0, f (a00, a01, b01|y)) .

3. Sample a10 from U (·, ·) such as {u1 < f (a10, a
0
1, b

0
1|y)} .
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4. Sample a11 from U (·, ·) such as {u1 < f (a10, a
1
1, b

0
1|y)} .

5. Sample b11 from U (·, ·) such as {u1 < f (a10, a
1
1, b

1
1|y)} .

6. Repeat from step 2.

In the above algorithm the f (a0, a1, b1|y) is not invertible with respect to its pa-
rameters a0, a1 and b1. For this reason, Neal’s approach (2003) is adopted. An interval

I=(L,R) is taken around the parameter of interest that contains at least a big part

of set S = {u < f (a0, a1, b1|y)} . More specifically, for parameter a0 an initial interval
I=(L,R) of size w is randomly picked that contains a00 and this interval is expanded

using the ’stepping out’ procedure (Neal, 2003) to contain a big part of S. Then, a0 is

sampled uniformly from the interval I and the interval is narrowed - using the shrink

procedure of Neal (2003) - each time that a new point is sampled out of S, until an a0

from S is sampled. For the parameters a1 and b1 the initial intervals are set equal to

Ia1 = (0, 1− b1) and Ib1 = (0, 1− a1) respectively. Then, a1 and b1 are uniformly sampled

from Ia1 and Ib1 respectively and the intervals are shrank- using the shrink procedure-

each time that a new point is sampled out of S.

7.5.3 Some Applications

The above algorithm for the estimation of the parameters of the GARCH(1) model is

applied to two series of data sets. Both of them are consisted of 844 daily exchange

rates multiplied by 1000. In detail, the daily exchange rate of the US dollar (USD)

and the Japanese Yen (JPY) with respect to the Greek Drachma (GRD) are used

(Figure 7-1, page 98). The initial 50000 iterations of the algorithm were dropped as

burn-in and 1 sample point out of 100 iterations is kept such that the final samples,

which consist of 5000 values, to be approximately, independent and identically distributed

samples from the marginal densities of the parameters of interest.

The final posterior samples were checked for convergence to the limiting distribution

by the criteria of Geweke (1992), Raftery and Lewis (1992) and Heidelberger and Welch
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USD JPY
a0 40 160
a1 31 30
b1 39 160

Table 7.10: Autocorrelation function results for the parameters of the GARCH model

(1983). Apart from this result, the subsampling diagnostic (see section 4.3 and Giak-

oumatos et al., 1999) was applied to the initial 50000 iterations of each chain in order to

check the convergence (a = 0.05, t = 0.90, d = 0.999) . Note that, the subsampling diag-

nostic is considered by its authors (Giakoumatos, Vrontos, Dellaportas and Politis, 1999)

‘very conservative’.

Table 7.10 presents the number of lagged values where the autocorrelation dies out

for each series of data. Graphically, these results are presented in Figure 7-23.
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Figure 7-23: Autocorrelation function plots for the parameters of the GARCH model
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Parameters Mean Variance
a0 0.940828 0.0871954
a1 0.065460 0.0002280
b1 0.902724 0.0003988

Table 7.11: Posterior Statistics for the papameters of the GARCH(1) model for USD

Results for USD

Figure 7-24 presents the 5000 iterations of the MCMC algorithm for each parameter

of interest for the case of GARCH(1,1) model applied to the USD. Based on this i.i.d.

sample, the posterior mean and variance of the parameters of the models are estimated.

Table 7.11 presents these estimates.

These posterior summary statistics indicate that the USD series is ’heavily’ volatility

persistent (a1 + b1 = 0.968174). The posterior histograms of the parameters a0, a1 and

b1 are presented in Figure 7-25.

For the convergence of the Markov chain, the subsampling diagnostic points out

that the proposed algorithm needs approximately 27000 iterations to get in the target

distribution. The results of the diagnostic are presented in Figure 7-26.
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Figure 7-24: MCMC output for the parameters of the GARCH(1.1) for USD
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Figure 7-25: Posterior Histograms for the parameters of the GARCH(1,1) for USD
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Figure 7-26: Subsampling diagnostic plot for the GARCH(1,1) for USD

Parameters Mean Variance
a0 2.934831 1.4824450
a1 0.123073 0.0009159
b1 0.779819 0.0030641

Table 7.12: Posterior Statistics for the papameters of the GARCH(1) model for JPY

Results for JPY

Regarding the case where GARCH(1,1) model is applied to JPY series, Figure 7-27

presents the 5000 iterations of the MCMC algorithm for each parameter of interest.

Based on this i.i.d. sample, the posterior mean and variance of the parameters are

estimated. The Table 7.12 presents these estimates.

These posterior summary statistics indicate that the JPY series is volatility persis-

tent (a1 + b1 = 0.902892). The posterior histograms of the parameters a0, a1 and b1 are

presented in Figure 7-28.

For the convergence of the Markov chain, the subsampling diagnostic points out
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Figure 7-27: MCMC output for the parameters of the GARCH(1.1) for JPY
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Figure 7-28: Posterior Histograms for the parameters of the GARCH(1,1) for JPY
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that the proposed algorithm needs approximately 19000 iterations to get in the target

distribution. The results of the diagnostic are presented in Figure 7-29.
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Figure 7-29: Subsampling diagnostic plot for the GARCH(1,1) for JPY
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Chapter 8

Comparison of the Univariate

Models

8.1 Introduction

In this chapter the univariate models that have been presented and analyzed in the pre-

vious chapter are compared. The model comparison method which is chosen is based on

the predictive distributions of time-varying volatilities. This choice is sensible due to the

predictive nature of the applicability of these models and due to the fact that volatilities

are of primary interest. As a criterion for the model comparison one of those suggested

by Gelfand, Dey and Chang (1992), has been chosen. Similar diagnostic measures were

presented by Pitt and Shephard (1999a, 1999b) in order to compare stochastic volatility

models.

8.2 The Comparison Method

The MCMC techniques for the time-varying volatility models that were described on the

previous chapter produce sample points from the joint posterior π
³
θ(t) | Φt

´
, where Φt =

(y1, ..., yt)
0 and θ(t)s , s = 1, ..., B, denotes the MCMC output for the model parameters
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based on samples of size B. Hence, θ(t)s can be used to carry out computations required

for model comparison. The estimate of the predictive density is computed using the

outcome of the MCMC algorithm:

bπ (yt | Φt−1) = B−1
BX
s=1

π
³
yt | θ(t−1)s ,Φt−1

´
.

Using the above equation and θ(T−R)s ,θ(T−R+1)s , ...,θ(T−1)s R one-step-ahead predictive

densities bπ (yT−R+1 | ΦT−R) , bπ (yT−R+2 | ΦT−R+1) ,...,bπ (yT | ΦT−1) are constructed.

Let Zt be the random variable representing a future point. Then, model M1 (M2) is

chosen according to whether D > 0 (D < 0) , where

D = log


TQ

t=T−R+1
bπ (Zt = yt|Φt−1;M1)

TQ
t=T−R+1

bπ (Zt = yt|Φt−1;M2)

 ,

and yt is the realization of the stochastic process at time t. Note that exp (D) is called

pseudo-Bayes factor (Gelfand, Dey and Chang 1992).

The above method is straightforward when applied to the case of ARCH and GARCH

model. Unfortunately, for the case of the unobserved ARCH and stochastic volatility

model the estimation of the predictive distributions for the last R data points is time

consuming. For this reason Pitt and Shephard (1999a, 1999b) methodology is followed

and π (Zt = yt|Φt−1;M) is estimated via filtering methods using the Bayesian mean θ
(T−R)

for the parameters of the model of interest. In particular, an estimate of

π
³
Zt = yt|Φt−1,θ

(T−R)
;M
´
is given as follows.

• Firstly, samples of size B is obtained (in the application it has be chosen B to be

equal to 10000) of the unobserved component of the unobserved ARCH model and

the unobserved volatilities of the stochastic volatility model, for t = T−R+1, ..., T,
using f it ∼ π

³
ft|Φt−1,θ

(T−R)
;M
´
and hit ∼ π

³
ht|Φt−1,θ

(T−R)
;M
´
, respectively, for
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i = 1, ..., B. These densities are easily derived for both models.

Then an estimate is given by

bπ ³Zt = yt|Φt−1,θ
(T−R)

;M
´
=
1

K

KX
i=1

bπ ³Zt = yt|f it,θ
(T−R)

;M
´
,

which is the result of the Monte Carlo integration of

π
³
yt|Φt−1,θ

(T−R)
;M
´
=

Z
π
³
yt|f t,θ

(T−R)
;M
´
π
³
ft|Φt−1,θ

(T−R)
;M
´
dft.

This technique presupposes that the densities π
³
yt|f t,θ

(T−R)
;M
´
can be evaluated and

simulated. This is valid for the unobserved ARCH model and stochastic volatility model ;

see equation (7.8) and equation (7.1) respectively. For more details about this technique

and the filtering method see Pitt and Shephard (1999a).

8.3 The Results

The MCMC algorithms that were presented in the previous chapter have been applied

using T = 844 daily exchange rates. In detail, the daily exchange rate of the US dol-

lar (USD) and the Japanese Yen (JPY) with respect to the Greek Drachma (GRD) are

used (Figure 7-1, page 98). In order to compare these models, Bayesian analysis is used

by estimating the predictive distributions π (yt|Φt−1) under each model. In this imple-

mentation the first 820 real data points are used, and R = 24 one-step-ahead predictive

distributions π (yt|Φt−1) are estimated for t = 821, ..., 844 data points. For each one of

those 24 time periods the predictive densities π (yt|Φt−1) are estimated at the real data

point yt, denoted by bπ (yt|Φt−1), under each model, as described in section 8.2. As a

criterion, the

D =
TX

t=T−R+1
log (bπ (Zt = yt|Φt−1;M1))−

TX
t=T−R+1

log (bπ (Zt = yt|Φt−1;M2)) ,
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Model USD JPY
ARCH(1) -69.6882327 -70.47012514
GARCH(1,1) -69.65541316 -70.41296153
Unobserved ARCH -68.05946666 -70.13310226
Stochastic volatility -67.33219424 -69.54337267

Table 8.1: Model comparison

is used and the model M1 (M2) is chosen in case D > 0 (D < 0) . The quantity

TX
t=T−R+1

log (bπ (Zt = yt|Φt−1;M))

is estimated for the models under consideration and the results are presented in Table 8.1

for the ARCH, GARCH, unobserved ARCH and stochastic volatility models respectively.

According to these results, for the two exchange rates the stochastic volatility model

seems to be more preferable for the one-ahead predictions in comparison to the Unob-

served ARCH model which is preferable than GARCH(1,1) model and ARCH(1) model.

Analogous results have been found by Kim, Shephard and Chib (1998) for the comparison

of the univariate GARCH and stochastic volatility models.
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Chapter 9

Existing Multivariate

Parameter-Driven Models

9.1 Introduction

Lately, there is a large scientific interest in the study of multivariate time-varying volatil-

ity models (Chib et al., 1999 and 2002). These models can capture not only the chang-

ing volatility of the financial time series but also the correlation structure existing be-

tween two or more time series. Regarding the multivariate observation-driven models

(ARCH/GARCH), a variety of different models has been proposed (Kraft and Engle,

1983; Bollerslev et al., 1988; Bollerslev 1990; Vrontos 2001).

This chapter focuses on the multivariate parameter-driven models. This specific

class of time-varying volatility models contains not only the versions of the multivari-

ate stochastic volatility models but also includes versions of the latent factor stochastic

volatility model (Pitt and Shephard, 1999a; Aguilar, Huerta, Prado and West 1999),

the multivariate unobserved ARCH model and the latent factor ARCH/GARCH models

(King, Sentana and Wadhwani, 1994; Diebold and Nerlove, 1989). In the following sec-

tions the most important of these multivariate parameter-driven models will be presented

along with the methods that have been proposed for the estimation of their parameters.
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9.2 Multivariate Stochastic Volatility Models

The most known multivariate stochastic volatility model has been proposed by Harvey,

Ruiz and Shephard (1994). In detail, the authors proposed a straightforward multivariate

version of the univariate stochastic volatility model.

This model can be written as

yt|· ∼MNk (0,H) ,

where

Ht =


σ21 exp (h1,t) 0 · · · 0

0 σ22 exp (h2,t) · · · 0
...

...
. . .

...

0 0 · · · σ2k exp (hk,t)

 ,

and

ht|· ∼MNk (a+Bht−1,Σh) ,

where yt is the k− variate vector of the realization of the time series at time t, ht =
(h1, h2, ..., hk)

0
is the vector of volatilities at time t, a =(a1, a2, ..., ak)

0
, Σh is a full co-

variance matrix of the volatilities and

B =


b1 0 · · · 0

0 b2 · · · 0
...

...
. . .

...

0 0 · · · bk

 .

Harvey, Ruiz and Shephard (1994) proposed to approximate this model by using the

process log (y2it) in the context of Gaussian state space model. This linearization of the

stochastic volatility model introduces non-Gaussian errors in the measurement equa-

tion (Pitt, 1997). The authors treat these non-gaussian errors as Gaussian because the
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Kalman Filter can be used. Unfortunately, the resulting estimates seem to be inefficient

due to the previous assumption. Another attempt was made by Mahieu and Schotman

(1998) who estimated the parameters of the above model using stochastic EM algorithm.

A serious disadvantage of multivariate stochastic volatility model is that it has a very

large number of parameters. For this reason, many scientists directed their research to

latent factor structure models.

9.3 Factor Stochastic Volatility Models

Apart from the straightforward extensions of the stochastic volatility model to the mul-

tivariate case, a very popular approach in modeling covariance matrices in financial lit-

erature is the latent factor structure.

Pitt and Shephard (1999a) and Pitt (1997) proposed a version of the latent factor

model that incorporates stochastic volatility processes. This model is presented in the

following hierarchical formula of conditional densities

yt|· ∼ MNn (Bf t,Σw) ,

ft|· ∼ MNk (0,D (ht) ID (ht)) ,

ht|· ∼ MNk (Lht−1,HIH) ,

where yt is a n − variate vector of stochastic process at time t, B is the n × k matrix

of factor weights, ft is the k × 1 common factors, the n × n matrix Σw and the k × k

matrixH are full covariance matrices, andD (ht) is a diagonal k×k matrix with elements
Dii = exp (ht/2) . The k× 1 vector ht are the volatilities that follow a V AR process and
the k × k matrix L is the hyperparameters of the stochastic volatility part. Pitt (1997)

considered the matrix L to be diagonal with all of its diagonal elements less than 1 to

ensure stationarity for the process of the volatilities ht. Moreover the diagonal elements

of B is restricted to be 1 for identifiability reasons. Pitt (1997) and Pitt and Shephard
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(1999a) proposed to sample from the joint posterior density of the aforementioned model

using a MCMC algorithm. In detail, they used a block sampling scheme based on Pitt’s

(1997) MCMC algorithm for the case of univariate stochastic volatility model.

Aguilar and West (2000) proposed a similar version for the factor stochastic volatility

model. This model can be written as

yt|· ∼ MNn (m+Bf t,Σw) ,

ft|· ∼ MNk (0,Ht) ,

h∗t |· ∼ MNk

¡
mh∗+Lh

∗
t−1,U

¢
,

where yt is a n− variate vector of stochastic process at time t, B is a n× k matrix of

factor weights, ft is the k × 1 common factors, the n× n matrix Σw is a full covariance

matrix and the diagonal k × k matrix H contains the volatilities ht,i. The vector of

log− volatilities h∗t = (log (ht,1) , log (ht,2) , ..., log (ht,k)) follow a V AR process and the

k×k matrix L is the hyperparameters of the stochastic volatility part. For identification

reasons, Aguilar and West (2000) set the matrix B to

B =



1 0 0 · · · 0

b21 1 0 · · · 0
...

...
...

. . . 0

bk,1 bk,2 bk,3 · · · 1

bk+1,1 bk+1,2 bk+1,3 · · · bk+1,k
...

...
...

. . .
...

bn,1 bn,2 bn,3 · · · bn,k


It becomes evident that the order of the univariate time series yt,i defines the estima-

tion of the elements of matrix B. The first time-series is the first factor plus a noise term

and so forth.

For the estimation of parameters of this model, Aguilar and West (2000) adopted a
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Metropolis-Hastings MCMC algorithm to take sample from the posterior density.

A more simplified factor stochastic volatility model has been proposed by Jacquier,

Polson and Rossi (1999). This model can be presented in the following three stage

hierarchical formula of conditional densities

yt|· ∼ MNn (m+BFt +Σ) ,

ft|· ∼ MNk (0,diag (h1, ..., hk)) ,

log (hit) |· ∼ N
¡
ai + bilog (hi,t−1) , v2i

¢
,

where yt is a n− variate vector of stochastic process at time t, B is a n× k matrix of

factor loadings, Ft is the k×1 common factors, the n×nmatrixΣ is a full covariance ma-
trix. The unobserved factors ft = (f1,t, ..., fk,t) follow independent Normal distributions

with variances, h1, ..., hk. Each of the k log−volatilities, (log (ht,1) , log (ht,2) , ..., log (ht,k))
follows an AR (1) process - as the univariate stochastic volatility model - with hyperpa-

rameters θ = (..., ai, bi, v
2
i , ...). The aforementioned restrictions of Aguilar and West

(2000) can be set in such a manner that the model to become identifiable. Another

approach, is to set the variance of its factor fi,t, i = 1, ..., k equal to one, i.e. to set

ai = −0, 5v2i / (1 + bi) .

Jacquier et al. (1999) proposed MCMC algorithms for the case where the factors

are observed and for the case of unobserved factors. For both cases they proposed a

Metropolis within Gibbs algorithm in order to take sample from the posterior density

of this model. This algorithm is similar with the one proposed by the aforementioned

authors for the case of multivariate stochastic volatility model.

9.4 Latent Factor ARCH Models

Diebold and Nerlove (1989) proposed a latent factor model where the unobserved factors

come from a ARCH(12) process. In detail, this model is presented in the following
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hierarchical formula of conditional densities

yt|· ∼ MNn (λft,Σw) ,

ft|· ∼ N
¡
0,σ2t

¢
,

σ2t = a0 +
1− a0
78

12X
i=1

(13− i) f2t−i,

where yt is a n− variate vector of stochastic process at time t, λ is the n× 1 vector of
factor weights, ft is the common factor and Σw is a n × n diagonal covariance matrix.

The authors used the Kalman filter to estimate the parameters of the model.

In a following step King, Sentana and Wadhwani (1994) extended this model such as

the unobserved factors to follow a GARCH process.
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Chapter 10

Auxiliary Variable Sampler and

Multivariate Time-Varying Volatility

Models

10.1 Multivariate Stochastic Volatility Model

10.1.1 Introduction

This section focuses on the Bayesian analysis of the multivariate stochastic volatility

model.

More specifically, the form of the proposed multivariate stochastic volatility model is

given by the following hierarchical structure of conditional densities

yt|· ∼MNk

³
0,H

1/2
t ΛH

1/2
t

´
, (10.1)
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where

Ht =


h1,t 0 · · · 0

0 h2,t · · · 0
...

...
. . .

...

0 0 · · · hk,t

 ,

and

hi,t|· ∼ LN
¡
βi log hi,t−1, σ

2
i

¢
.

where yt is a k−variate vector of realizations of the stochastic process at time t,Ht is k×k
diagonal matrix that contains the volatilities, Λ is a positive defined covariance matrix,

LN (·, ·) is the LogNormal density and β1, β2, ..., βk, σ21, σ22, ..., σ2k are the hyperparameters
of the model. Restrictions, 0 < βi < 1, for i = 1, .., k are imposed such as the series

of volatilities to be covariance stationary. This form of the model leads to a MCMC

algorithm where some of the full conditional densities are not of standard form.

In the next section the model (10.1) is rewritten by the introduction of kT latent

variables such as the constructing MCMC algorithm to be entirely based on Gibbs steps.

10.1.2 Bayesian Approach and the Auxiliary Variable Sampler

The model (10.1) can be rewritten applying the following Theorem of the decomposition

of the LogNormal density.

Theorem 18 Suppose that x|u follows f (·) , where

f (x|u) =
1

2x
√
u
IA,

A =
©
x : exp

¡
µ−√u¢ ≤ x ≤ exp ¡µ+√u¢ª

and u follows G
¡
3
2
, 1
2σ2

¢
. Then the marginal density of x is the LogNormal density with

parameters µ and σ2.
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Proof:

f (x) =

Z
u

f (x|u) f (u) du

=
1

2xΓ (3/2) (2σ2)3/2

Z
u

exp
³
− u

2σ2

´
du

=
1

x
√
π (2σ2)3/2

∞Z
(log x−µ)2

exp
³
− u

2σ2

´
du

=
1

x
√
2πσ2

exp

Ã
−(log x− µ)2

2σ2

!
≡ LN

¡
µ, σ2

¢
.

By utilizing the above Theorem, the stochastic volatility model of (10.1) can be

rewritten with the following hierarchical structure

yt|· ∼ MNk

³
0,H

1/2
t ΛH

1/2
t

´
, (10.2)

f
¡
hi,t|ui,t, βi, hi,t−1, σ2i

¢
=

1

2hi,t
√
p
IAi,t , for i = 1, ..., k,

ui,t|· ∼ G

µ
3

2
,
1

2σ2i

¶
, for i = 1, ..., k,

where

Ai,t =
©
exp

¡
βi log hi,t−1 −√ui,t

¢ ≤ hi,t ≤ exp
¡
βi log hi,t−1 +

√
ui,t
¢ª

. (10.3)

Based on (10.2) , the joint posterior distribution -known up to a constant- for the

parameters of the multivariate stochastic volatility model takes the following form:
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Let θ =(β1, β2, ..., βk,σ
2
1, σ

2
2, ..., σ

2
k,Λ,H,U) is the parameter vector, where

H =


h1,T h2,T · · · hk,T

h1,T−1 h2,T−1 · · · hk,T−1
...

...
. . .

...

h1,1 h2,1 · · · hk,1

 ,

then

f (θ|Y) ∝
Ã
|Λ|T/2

kY
i=1

Ã
σ
2 3T
2

i

TY
t=1

³
h
3/2
i,t

´!!−1
(10.4)

exp

(
−1
2

TX
t=1

³
y
0
tH

−1/2
t Λ−1H−1/2t yt

´)

exp

(
−1
2

kX
i=1

TX
t=1

ui,t
2σ2i

)
kY
i=1

TY
t=1

IAi,t

π
¡
β1, β2, ..., βk,σ

2
1, σ

2
2, ..., σ

2
k,Λ,h0

¢
,

where IAi,t is defined in (10.3) and π (·) is the joint a priori distribution of the parameters
of interest.

The full conditional densities for the parameters of stochastic volatility model, based

on the posterior (10.4) are given below

• σ2i |· ∼ IG

µ
3T+1
2

, 0.5
TP
t=1

ui,t + 0.5

¶
, for i = 1, ..., k.

• ui,t|· ∼ exp onential
³

1
2σ2i

´
IA, where

A =
©
ui,t : ui,t ≥ (log hi,t − βi log hi,t−1)

2ª ,
for i = 1, ..., T and t = 1, ..., T.

• Λ−1|· ∼W
Ãµ

K+
TP
t=1

³
ytH

−1/2
t H

−1/2
t y

0
t

´¶−1
, T + 2

!
.
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• Marginalizing out the ui,t (Chib and Carlin 1999) the full conditional for βi is

N (µi, s
2
i ) , where

µi =

TP
t=1

log hi,t−1 log hi,t

TP
t=1

log h2i,t−1

s2i =
σ2i

TP
t=1

log h2i,t−1

,

• The full conditional density for the matrix of volatilities H =(hT ,ht−1, ...)
0
is not

of standard form

f (H|·) ∝
Ã

TY
t=1

kY
i=1

h
3/2
i,t

!
exp

(
−0.5

TX
t=1

y0tH
−1/2
t Λ−1H−1/2t yt

)
(10.5)

TY
t=1

kY
i=1

IAi,t .

In order to handle the problem that the full conditional density of volatilities which

is not of standard form, certain non− linear transformations of the volatilities are

adopted. Firstly, note that

Theorem 19 Let the density given by (10.5) . If we apply the following transformation

wi,t = h−0.5i,t , for i = 1, ..., k and t = 1, ..., T

then the distribution of

W =


w1,T w2,T · · · wk,T

w1,T−1 w2,T−1 · · · wk,T−1
...

...
. . .

...

w1,1 w2,1 · · · wk,1

 ,
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is given by the following formula

f (W|·) ∝ exp

(
−0.5

TX
t=1

y0tG
1/2
t Λ−1t G

1/2
t yt

)
(10.6)

TY
t=1

kY
i=1

IA∗i,t ,

where

G
1/2
t = diag (w1,t, w2,t, ..., wk,t) ,

A∗i,t =
©
exp

¡
0.5
¡
βi logw

2
i,t−1 −

√
ui,t
¢¢ ≤ wi,t ≤ exp

¡
0.5
¡
βi logw

2
i,t−1 +

√
ui,t
¢¢ª

for t = 2, ..., T, and (10.7)

A∗i,1 =
©
exp

¡−0.5 ¡βi log hi,0 +√ui,1¢¢ ≤ wi,1 ≤ exp
¡−0.5 ¡βi log hi,0 −√ui,1¢¢ª ,

for t = 1.

Proof. Note that the Jacobian of the above transformations is |J | ∝
TQ
t=1

pQ
i=1

w−3t . The

remaining calculations are straightforward.

The following remark turns up straightforwardly from the above theorem:

Remark 1 Following (10.6) .

1. The marginal density of wt = (w1,t, w2,t, ..., wk,t) is a truncated multivariate Normal

density with mean vector equals to 0 and variance covariance matrix St equals to

St=
¡
y∗tΛ

−1y∗t
¢−1

, (10.8)

where

y∗t = diag (y1,t, y2,t, ..., yk,t) .

The truncation is given by
kQ
i=1

IA∗i,t ,where A
∗
i,t is given by (10.7) .
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2. The conditional density of wi,t given wt/−i = (w1,t, ..., wi−1,t, wi+1,t, ..., wk,t)is Nor-

mal with mean and variance given by the properties of the Multivariate distribution

(Johnson and Wichern, 1999), truncated on
©
A∗i,t ∩A∗i,t+1

ª
.

Due to the difficulty of sampling from the truncated multivariate Normal distribution

of the Remark (1) , sampling procedure is taking place from the univariate density of

each wi,t, (see 10.7) for t = 1, ..., T and i = 1, ..., k.

In detail

• wi,1|· ∼ N (·, ·) I(L,U), where

L =


max

 0, exp
¡−0.5 ¡βi log hi,0 +√u1¢¢ ,

exp
³

1
2βi

¡
logw2i,2 −√ui,2

¢´
 , if β > 0

max

 0, exp
¡−0.5 ¡βi log hi0 +√u1¢¢ ,

exp
³

1
2βi

¡
logw2i,2 +

√
ui,2
¢´

 , if β < 0

,

U =


min

 exp
¡−0.5 ¡βi log hi,0 −√u1¢¢ ,

exp
³

1
2βi

¡
logw2i,2 +

√
ui,2
¢´

 , if β > 0

min

 exp
¡−0.5 ¡βi log hi,0 −√u1¢¢ ,

exp
³

1
2βi

¡
logw2i,2 −√ui,2

¢´
 , if β < 0

.

• wi,t|· ∼ N (·, ·) I(L,U), for t = 2, ..., T − 1, where

L =


max

 0, exp
¡
0.5
¡
βi logw

2
i,t−1 −√ui,t

¢¢
,

exp
³

1
2βi

¡
logw2i,t+1 −√ui,t+1

¢´
 , if βi > 0

max

 0, exp
¡
0.5
¡
βi logw

2
i,t−1 −√ui,t

¢¢
,

exp
³

1
2βi

¡
logw2i,t+1 +

√
ui,t+1

¢´
 , if βi < 0

,
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U =


min

 0, exp
¡
0.5
¡
βi logw

2
i,t−1 +

√
ui,t
¢¢

,

exp
³

1
2βi

¡
logw2i,t+1 +

√
ui,t+1

¢´
 , if βi > 0

min

 0, exp
¡
0.5
¡
βi logw

2
i,t−1 +

√
ui,t
¢¢

,

exp
³

1
2βi

¡
logw2i,t+1 −√ui,t+1

¢´
 , if βi < 0

.

• wi,T |· ∼ N (·, ·) I(L,U), for t = 2, ..., T − 1, where

L = max
©
0, exp

¡
0.5
¡
βi logw

2
i,T−1 −√ui,T

¢¢ª
U = min

©
0, exp

¡−0.5 ¡β logw2i,T−1 −√ui,T¢¢ª .
In the end of each sweep of the algorithm we re-transform wi,t to hi,t by using the

reverse transformation hi,t = 1/w
2
i,t; for t = 0, ...T,and i = 1, ..., k

10.1.3 Application

In this section an application is presented using real data. In detail, the daily exchange

rate of the US dollar (USD) and the Japanese Yen (JPY) with respect to the Greek

Drachma (GRD) are used. To elaborate, let ct be the exchange rate of a currency with

respect to the drachma on day t; then (one component of the multivariate) data series is

given by yt = log
³

ct
ct−1

´
· 1000, that represents the daily relative (percentage) change of

the exchange rate since

log

µ
ct
ct−1

¶
' ct

ct−1
− 1 = ct − ct−1

ct−1
, for

ct
ct−1

' 1.

The data set is consisted of 845 multivariate observations concerning the period

(16/12/93− 2/5/97) and illustrated in Figure 10-1.
Applying the algorithm that has been described in the previous section, a sample

from the posterior density of the model is taken and used to make inference about the

parameters. In detail, the first 50000 sample points of the MCMC algorithm are discarded
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Time

12/16/1993 12/16/1994 12/16/1995 12/16/1996

USD/GRD exchange rate

Time

12/16/1993 12/16/1994 12/16/1995 12/16/1996

JPY/GRD exchange rate

Figure 10-1: Exchange Rates Series
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Parameter Mean Variance
USD b 0.9536141 0.001116
USD σ2 0.0454296 0.001083
JPY b 0.9246696 0.001479
JPY σ2 0.0763938 0.001639
Λ(1, 1) 21.54266 27.94165
Λ(1, 2) 4.757719 1.129672
Λ(2, 2) 21.5663 12.81458
Corr(USD, JPY ) 0.2228579 0.001273

Table 10.1: Summary statistics for the hyperparameters of the multivariate SV model

as burn-in. After the drop of the burn-in, one sample point is kept out of 2000 iterations

in order the final sample of 5000 iterations to be an approximately independent sample

from the posterior density of the parameters of the multivariate stochastic volatility

model.

The final posterior sample was checked for convergence to the limiting distribution.

All the chains have been converged based on the criteria of Geweke (1992), Raftery and

Lewis (1992) and Heidelberger and Welch (1983). Apart from this result the subsampling

diagnostic (see section 4.3 and Giakoumatos et al., 1999) is applied in order to check the

convergence. This criterion is applied to the initial 50000 iterations of the Markov chain

by setting: a = 0.05, t = 0.99, d = 0.999. The subsampling diagnostic points out that the

proposed algorithm needs approximately 33000 iterations to get in the target distribution.

The results of this diagnostic are presented in Figure 10-2. Moreover, Figure 10-2 presents

the autocorrelation plots for the hyperparameters from the MCMC series

Figure 10-4 presents the 5000 iterations from theMCMC for each parameter of interest

for the stochastic volatility model. Based on this i.i.d. sample the posterior mean and

variance of the parameters of the model are estimated.

The summary statistics of these marginal densities are presented in the Table 10.1.

From the above, it becomes obvious that both exchange rates (USD and JPY) present

high volatility persistence ( E (bUSD)=0.95 and E (bJPY )=0.92) and the correlation be-

tween these two exchange rates is significant (Corr(USA, JPY )= 0.2228579). The pos-
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Figure 10-2: Subsampling diagnostic plot for Multivariate SV model
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Figure 10-3: Autocorrelation function plots for the hyperparameters of the multivariate
SV model
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Figure 10-4: MCMC output for parameters of multivariate SV model
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terior histograms of the hyperparameters of the multivariate stochastic volatility model

are presented in Figure 10-5 and for the parameters of Λ in Figure 10-6.

0.75 0.80 0.85 0.90 0.95 1.00

Posterior Histogram for b1
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Posterior Histogram for s(1)^2

0.7 0.8 0.9 1.0

Posterior Histogram for b2
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Posterior Histogram for s(2)^2

Figure 10-5: Posterior Histograms for the hyperparameters of the multivariate SV model

168



10 20 30 40 50 60

Posterior Histogram 
for lamda(1,1)

2 4 6 8 10 12

Posterior Histogram 
for lamda(1,2)^2

0.10 0.15 0.20 0.25 0.30 0.35

Posterior Histogram 
for cor(y1,y2)

10 20 30 40

Posterior Histogram 
for lamda(2,2)

Figure 10-6: Posterior Histograms for the variance covariance matrix Λ of the multivariate
SV model

169



10.2 Multivariate Unobserved ARCH Model

10.2.1 Introduction

A straightforward extension of the univariate unobserved ARCH model to multivariate

case, is the model that presented bellow

yt|f t,Σ ∼ Np (ft,Σ) , (10.9)

ft|ft−1,θ, f0 ∼ Np (0,∆t)

∆t = diag
¡
σ21t, ..., σ

2
pt

¢
, σ2it = ai + bi · f2i,t−1,

for t = 1, . . . , T ;

where yt is the p−variate realization of the stochastic process,

θ = (a1, ..., ap, b1, ..., bp) is the vector of hyperparameters, f0 is a p−variate vector which
denotes the ”history” of the unobserved ARCH components, ft is the time varying

p−dimension unobserved component, Σ and ∆t are (p× p) covariance matrices of the

stochastic process and the unobserved component at time t respectively, and Np (·, ·) de-
notes the p−variate Normal distribution. Restrictions ai > 0 and bi > 0, for i = 1, ...., p,

are imposed to (10.9) so that the elements of ∆t are always positive. The additional

restrictions bi ≤ 1 for i = 1, ...., p, are placed so that each of the p ARCH components of
the model to be covariance stationary (Engle, 1982). The unconditional and conditional

variance of the stochastic process yt are given by

V ar (yt) = Σ+H,

V ar (yt|yt−1,θ) = Σ+∆t,
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whereH = diag
³

a1
1−b1 , ...,

ap
1−bp

´
; thus, the unconditional and conditional variance can be

decomposed into two parts respectively. The first part is the variance-covariance matrix

Σ, which is independent of time, and can be considered as the underlying variance struc-

ture of the stochastic process yt. The second part is the matrix H for the unconditional

variance and the matrix ∆t for the conditional variance respectively, and expresses the

variability which is caused by the phenomenon of volatility clustering.

It is readily shown that each element of yt follows a univariate unobserved ARCH

process defined in (7.8), but (10.9) achieves the modelling of the covariance structure

of yt through Σ. The parameter vector of (10.9) contains the hyperparameters θ, the

unobserved components F =(f1, ..., fT ) , the ‘history’ f0 of the unobserved components

and the covariance matrix Σ.

10.2.2 Bayesian Approach and the Auxiliary Variable Sampler

In this section, the auxiliary variable algorithm for sampling from the posterior density

of the multivariate unobserved ARCH model is analyzed.

Denoting all data by the T × p matrix Y =(y1, ...,yT ) , the joint posterior density of

model (7.8) can be calculated, via Bayes theorem, by

f (F,θ,Σ, f0|Y) ∝
TY
t=1

(f (yt|ft,Σ) f (ft|ft−1,θ, f0))π (θ,Σ, f0) . (10.10)

The first two terms in the above product are derived from the hierarchical structure in

(10.9) . The last term, π (θ,Σ, f0) , is the joint prior density of θ, Σ and f0. These vectors

are assumed a priori independent with prior densities given by π (θ) ∝
µ

PQ
i=1

ai

¶−1
,

f0 ∼ Np (0,V) for a diagonal covariance matrix V, and Σ ∼ IW (k,A) , where IW (·, ·)
denotes the inverse Wishart distribution with mean E (Σ) = 1

k−2p−2A, where A is a p×p
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matrix. Using these prior densities, the posterior (10.10) takes the form

f (F,θ,Σ, f0|Y) ∝
1

pQ
i=1

µ
ai

TQ
t=1

³q
ai + bif2i,t−1

´¶ · 1

|Σ|T+k−p−12

(10.11)

· exp
(
−1
2

Ã
TX
t=1

Ã
pX

i=1

µ
f2i,t

ai + bif2i,t−1

¶!
+ tr

¡
AΣ−1

¢!)

· exp
(
−1
2

TX
t=1

³
(yt − ft)´Σ−1 (yt − ft)

´)

· exp
½
−1
2
f´0V

−1f0

¾
.

From the above, it is clear that (10.11) is heavily parameterized and that construction

of a MCMC sampling strategy is not at all simple. In detail, all full posterior conditional

densities are not of known form, so Gibbs sampler steps are problematic. Furthermore,

it is known that Metropolis-Hastings requires a high degree of sophistication (Shephard

and Pitt, 1997; Kim et al, 1998).

The following theorem resolves this problem.

Theorem 20 If in the posterior density f (F,θ,Σ, f0|Y) defined in (10.11) we perform
(a) the transformations

wi,t =

r
bi
ai
· fi,t, gi =

r
ai
bi
, γi = bi,

for t = 0, ...T and i = 1, ..., p,

(b) the inclusions of 2T positive latent variables u =(u1, ..., uT ) and k =(k1, ..., kT )
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such that the resulting joint density is given by

f (u,k,g,γ,W,Σ|Y) ∝

 TY
t=1

I

ut ≤ 1
pQ

i=1

q
1 + w2i,t−1




·
Ã

TY
t=1

I

Ã
kt ≤ exp

(
−1
2

pX
i=1

w2i,t
γi
£
1 + w2i,t−1

¤)!!

· exp
½
−1
2
z´0V

−1z0

¾
1

|Σ|T+k−p−12

pQ
i=1

γ
T
2
i

· exp
(
−1
2

Ã
tr (AΣ) +

TX
t=1

(yt − zt)0 Σ−1 (yt − zt)
!)

,

where I (·) is the indicator function, g =(g1, ..., gp)0 , γ =
¡
γ1, ..., γp

¢0
,

zt = (g1 · w1,t, ..., gp · wp,t)
0 for t = 0, ..., T and W =(w0, ...,wT )

0́ , then the marginal

density f (F,θ,Σ, f0|Y) is given by (10.11).
Proof: For the first step of the theorem note that the Jacobian takes the form

|J| =
PY
i=1

£
gT+2i · γi

¤
and

fW,g,γ (W,θ,Σ,w0|Y) = fa,b,F (W,θ,Σ,w0|Y) · |J|

=
1

pQ
i=1

q
1 + w2i,t−1

exp

(
−1
2

pX
i=1

w2i,t
γi
£
1 + w2i,t−1

¤)

· exp
½
−1
2
z´0V

−1z0

¾
1

|Σ|T+k−p−12

pQ
i=1

γ
T
2
i

· exp
(
−1
2

Ã
tr (AΣ) +

TX
t=1

(yt − zt)0 Σ−1 (yt − zt)
!)

.

For the second step, it is enough to integrate all the latent parameters of the resulting
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posterior density

f (W,θ,Σ,w0|Y) =

+∞Z
· · ·
Z

0

f (W,θ,Σ,w0,u,k|Y) du1 · · · duTdk1 · · · dkT

= exp

½
−1
2
z´0V

−1z0

¾
· 1

|Σ|T+k−p−12 ·
pQ

i=1

γ
T
2
i

· exp
(
−1
2

Ã
tr (A ·Σ) +

TX
t=1

(yt − zt)0 ·Σ−1 · (yt − zt)
!)

·
Z 1

pQ
i=1

√
1+w21,t

0

du1 · · · · ·
Z 1

pQ
i=1

√
1+w2p,t

0

duT

·
Z exp

(
pP
i=1

w21,t+1

γ1·[1+w21,t]

)
0

dk1 · · · · ·
Z exp

(
pP
i=1

w2p,t+1

γp·[1+w2p,t]

)
0

dkT

= exp

(
−1
2

Ã
tr (A ·Σ) +

TX
t=1

(yt − zt)0 ·Σ−1 · (yt − zt)
!)

· exp
½
−1
2
z´0V

−1z0

¾
· 1

|Σ|T+k−p−12 ·
pQ

i=1

γ
T
2
i

·

 1
pQ

i=1

q
1 + w2i,t

 · exp
(

pX
i=1

w2i,t+1
γi ·

£
1 + w2i,t

¤)

The above Theorem guarantees that a MCMC algorithm which obtains samples

from f (u,k,g,γ,wt,Σ|Y) also obtains samples from the marginal density (with re-

spect to u, k) f (g,γ,wt,Σ|Y) and using the reverse transformations of (a) samples
from f (F,θ,Σ, f0|Y) are obtained. In addition to that, using the strategy suggested by
Chib and Carlin (1999) some of the full conditional densities are marginalized over some

parameters so that the final full conditional distributions to have elegant forms. The

following remarks explain in detail these marginalizations.

Remark 2 If the full conditional density f
¡
γi|u,k,g,γ−i,W,Σ,Y

¢ ≡
f
¡
γi|k,γ−i,W

¢
, for i = 1, ..., p, where γ−i denotes the vector that contains all the
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elements of γ apart from the element γi, is marginalized over the T latent parameters

k =(k1, ..., kT ) , then

f
¡
γi|γ−i,W

¢ ≡ f (γi|W) ≡ IG
Ã
T − 2
2

,
1

2

TX
t=1

w2i,t
1 + w2i,t−1

!
I (γi ≤ 1) ,

where IG (a, b) denotes the Inverse Gamma density with mean b2

(a−1)2(a−2) .

Remark 3 If the full conditional density is given by f
¡
wt|u,k,g,γ,W−i,Σ,Y

¢ ≡
f
¡
wt|ut+1, kt, kt+1,g,γ,wt−1,wt+1,Σ,Y

¢
for t = 1, .., T − 1, is marginalized over the

parameter kt then,

f
¡
wt|ut+1, kt+1,g,γ,wt−1,wt+1,Σ,Y

¢
≡ Np (mt,St) I

ut+1 ≤ 1
pQ

i=1

q
1 + w2i,t

 I
Ã
kt+1 ≤ exp

(
−1
2

pX
i=1

w2i,t+1
γi
¡
1 + w2i,t

¢)! ,

where

S−1t = G0·Σ−1·G+ Γt,

mt = St ·G0·Σ−1·yt,

where G = diag(g1, . . . , gp) and Γt = diag
¡¡
γ1
¡
1 + w21,t−1

¢¢
, ...,

¡
γp
¡
1 + w2p,t−1

¢¢¢
are

diagonal p× p matrices.

Remark 4 If the full conditional density is given by f
¡
wT |u,k,g,γ,W−i,Σ,Y

¢ ≡
f
¡
wT |kT ,g,γ,wT−1,wT ,Σ,Y

¢
is marginalized over the parameter kT then,

f
¡
wT |g,γ,wt−1,wt,Σ,Y

¢ ≡ Np (mT ,ST ) ,

where S−1T = (G0Σ−1G)+ΓT , mT = STG
0Σ−1yT , G = diag(g1, . . . , gp),

Γt = diag
¡¡
γ1
¡
1 + w21,T−1

¢¢
, ...,

¡
γp
¡
1 + w2p,T−1

¢¢¢
.
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Thus, by using the previous Remarks, the MCMC algorithm is readily constructed

by using the following Gibbs steps; the notation |· implies conditioning on all remaining
parameters.

• Σ|· ∼ IWp

µ
T + k,

µ
A+

TP
t=1

³
(yt − zt) (yt − zt)0

´¶¶
,

where zt = (g1 · w1,t, ..., gp,t · wp,t)
0
.

• γi|· ∼ IG
µ

T−2
2
, 1
2

TP
t=1

w2i,t
1+w2i,t−1

¶
I (γi ≤ 1) , for i = 1, ..., p.

• g|· ∼ Np (m,S)
pQ

i=1

I (gi ≥ 0) , where S−1 = X0V
−1X0 +

TP
t=1

(XtΣ
−1Xt) , m =

S
TP
t=1

(XtΣ
−1yt) and Xt = diag (w1,t, . . . , wp,t) .

• ut|· ∼ U
0, 1

pQ
i=1

√
1+w2i,t−1

 , for all t = 1, ..., T.

• kt|· ∼ U
µ
0, exp

½
pP

i=1

w2i,t

γi[1+w2i,t−1]

¾¶
, for all t = 1, ..., T.

• w0|· ∼ Np (0,V) I

u1 ≤ 1
pQ
i=1

√
1+w2i,0

 · Iµk1 ≤ exp½−12 · pP
i=1

w2i,1

γi(1+w2i,0)

¾¶

• wt|· ∼ N (mt,St) I

ut ≤ 1
pQ
i=1

√
1+w2i,t−1

·Iµkt ≤ exp½−12 pP
i=1

w2i,t

γi(1+w2i,t−1)

¾¶
, where

S−1T and mT are defined in Remark 3, for all t = 1, ..., T − 1.

• wT ∼ Np (mT ,ST ) , where S−1T and mT are defined in Remark 4.

It has been mentioned that, in order to sample from the above truncated Normal

densities the method of Robert (1995) is followed, and from the truncated Inverse Gamma

densities we suggest using an additional latent variable as described in section 10.6.
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10.2.3 Application

In this section an application of the multivariate unobserved ARCH model is presented

using real data. In detail, the daily exchange rate of the US dollar (USD) and the

Japanese Yen (JPY) with respect to the Greek Drachma (GRD) are used. The data set

is consisted of 845 multivariate observations concerning the period (16/12/93− 2/5/97)
and illustrated in Figure 10-1 (pp 163). Using the algorithm that was described in the

previous section, a sample from the posterior density of the models of interest can be

generated and by using this sample inferences about the parameters can be made.

In detail, the MCMC algorithm was applied for 10000 iterations keeping the non-

diagonal elements of the variance-covariance matrix Σ equal to 0; then the full algorithm

was applied for 550000 iterations. This enabled the algorithm to quickly “locate” the

high posterior regions of the posterior density. The first 50000 iterations were discarded

as a burn-in and, for the remaining 500000 iterations one sample point is kept every 100

iterations in order to have an approximately independent sample from the posterior den-

sity of the parameters of the multivariate unobserved ARCH model. Figure 10-4 presents

the final sample from the MCMC algorithm for each parameter of the multivariate unob-

served ARCH model. In order to assess the convergence of the MCMC algorithm to the

posterior distribution, the subsampling diagnostic (see section 4.3 and Giakoumatos et

al., 1999) is used to the initial 50000 iterations of the full algorithm. For the application

of this criterion the following quantities were set: a = 0.05, t = 0.99, d = 0.999. The

subsampling diagnostic pointed out that the proposed algorithm needs approximately

29000 iterations to get in the target distribution. The results of the diagnostic are pre-

sented in Figure 10-8. Moreover, Figure 10-9 presents the autocorrelation plots for the

hyperparameters for the MCMC series

The summary statistics of the posterior marginal densities are presented in the Table

10.2.

From the above, it is obvious that both ARCH components, for USD and JPY, present

high volatility persistence ( E (bUSD) = 0.9077 and E (bJPY ) = 0.8319 ).
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Figure 10-7: MCMC output for parameters of multivariate unobserved ARCH model
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Figure 10-8: Subsampling diagnostic plot for multivariate unobserved ARCH model
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Figure 10-9: Autocorrelation function plots for the hyperparameters of the multivariate
unobserved ARCH model
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Parameter Mean Variance
USD a 2.717691 1.012218
USD b 0.9077305 0.006078998
JPY a 4.326326 2.508016
JPY b 0.8318802 0.01364302

Table 10.2: Summary statistics for the hyperparameters of the Unobserved ARCH model

USD JPY
USD 14.58924

(3.11593)
5.934796
(0.77334)

JPY 0.427934
(0.004285)

13.45407
(4.063)

Table 10.3: Estimates of the covariance matrix. Diagonal elements: variances. Upper
diagonal elements: covariances. Lower diagonal elements: correlations

Table 10.3 contains the posterior mean and standard deviation estimates of the com-

ponents of the underlying variance-covariance matrix Σ. It can be seen that there is

positive correlation (0.43) between the USD and the JPY.

The posterior histograms of the hyperparameters of the multivariate unobserved

ARCH model are presented in Figure 10-10 and for the parameters of Σ in Figure 10-11.
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Figure 10-10: Posterior Histograms for the hyperparameters of the multivariate unob-
served ARCH model
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Figure 10-11: Posterior Histograms for the variance covariance matrix Σ of the multi-
variate unobserved ARCH model
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10.3 Latent Factor ARCH Model

10.3.1 Introduction

A more parsimonious representation of the multivariate unobserved ARCH model (10.9)

is given by the latent factor ARCH model introduced by Diebold and Nerlove (1989)

and King et al. (1994). Adopting again the hierarchical conditional densities, the latent

factor ARCH model can be defined as following:

yt|λ,ft,Σ ∼ Np (λft,Σ) , (10.12)

ft|a, ft−1 ∼ N (0,∆t) ,

∆t = 1− a+ af2t−1, t = 1, . . . , T ;

where yt is a p−variate realization of the stochastic process at time t, ft is the ‘unique’
common unobserved ARCH factor at time t, λ is the (p× 1)−variate vector of parameters
reflecting the sensitivity of the common factor ft,

Σ =diag
¡
γ1, ..., γp

¢
is a diagonal (p× p) covariance matrix and a is the hyperparam-

eter of the ARCH component that takes values in (0, 1). The model (10.12) satisfies suf-

ficient conditions which ensure parameter identifiability; see Diebold and Nerlove (1989).

The unconditional variance-covariance matrix of the process yt is

V ar (yt) = λ · λ0 +Σ.

The parameter vector of (10.12) contains the hyperparameter a, the vector of loadings

λ, the vector of the unobserved component f =(f1, ..., fT ) , the ‘history’ f0 of the unique

unobserved component and the vector γ =
¡
γ1, ...,γp

¢
of the covariance matrix Σ.
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10.3.2 Bayesian Approach and the Auxiliary Variable Sampler

In this section a full Bayesian analysis for the latent factor ARCH model is presented

and an auxiliary variable algorithm is proposed in order to sample from the parameters

of interest of the latent factor ARCH model.

Denoting all data by the T × p matrix Y =(y1, ...,yT ) , the joint posterior density of

model (10.12) can be written as

f (λ, f ,a,γ,f0|Y) ∝
TY
t=1

(f (yt|λ,ft,γ) f (ft|ft−1, a))π (λ,γ,a, f0)

where π (λ,a,γ,f0) denotes the joint prior density of the parameters of the models. As-

suming a priori independence for the parameters, π (λ) ∝ constant, π (γ) ∝
µ

pQ
i=1

γi

¶−1
,

for i = 1, ...., p, a ∼ U (0, 1), where U (·, ·) denotes the uniform distribution and f0 ∼
N (0, s) are chosen. This results to a joint prior density of the form

π (λ,γ,a, f0) ∝
Ã

pY
i=1

γi

!−1
exp

½
−1
2
· f

2
0

s

¾
.

Then, the joint posterior density of the parameters of the latent factor ARCH model can

be written as

f (λ, f ,a,γ,f0|Y) ∝
Ã

pY
i=1

γ
T
2
+1

i

!−1Ã TY
t=1

q
1− a+ af2t−1

!−1
exp

½
−1
2

f20
s

¾
(10.13)

· exp
(
−1
2

TX
t=1

Ã
f2t

1− a+ af2t−1
+

pX
i=1

(yi,t − λift)
2

γi

!)
.

The above joint posterior density does not have full conditional densities of known

form. In order to overcome this problem, the following theorem is utilized .

Theorem 21 If in the posterior density π (λ, f ,a,γ,f0|Y) in (10.13) we include
ζ =(ζ1, ..., ζT )

0 and z =(z1, ..., zT )
0 positive random variates such that the joint density
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f (λ, f ,a,γ,f0, ζ, z|Y) takes the form

f (λ, f ,a,γ,f0, ζ, z|Y) ∝
Ã

pY
i=1

γ
T
2
+1

i

!−1
exp

(
−1
2

Ã
f20
s
+

TX
t=1

pX
i=1

(yi,t − λift)
2

γi

!)

·
(

TY
t=1

I

µ
zt ≤ exp

½
−1
2

f2t
1− a+ af2t−1

¾¶)

·
(

TY
t=1

I

Ã
ζt ≤

1p
1− a+ af2t−1

!)
,

then the marginal density of f (λ, f ,a,γ,f0|Y) is given by (10.13) .
Proof: Let θ =(λ, f ,a,γ,f0) ,then

f (θ|Y) =

Z
· · ·
Z
[θ,k, z|Y] dζ1 · · · dζTdz1 · · · dzT

=
1µ

pQ
i=1

γ
T
2
+1

i

¶ · exp(−1
2
·
Ã
f20
s
+

TX
t=1

pX
i=1

(yi,t − λi · ft)2
γi

!)

·
Z exp

½
−1
2
· f21
1−a+a·f20

¾
0

dz1 · · · · ·
Z exp

½
− 1
2
· f2T
1−a+a·f2

T−1

¾
0

dzT

·
Z 1√

1−a+a·f20

0

dζ1 · · · · ·
Z 1√

1−a+a·f2
T−1

0

dζT

=
1µ

pQ
i=1

γ
T
2
+1

i

¶ · 1µ
TQ
t=1

p
1− a+ a · f2t−1

¶ · exp½−1
2
· f

2
0

s

¾
·

exp

(
−1
2
·

TX
t=1

Ã
f2t

1− a+ a · f2t−1
+

pX
i=1

(yi,t − λi · ft)2
γi

!)

The above theorem guarantees that a MCMC algorithm which obtains samples from

f (λ, f ,a,γ,f0, ζ, z|Y) also obtains samples from f (λ, f ,a,γ,f0|Y) . Moreover, the con-
struction of this MCMC algorithm is straightforward using the following Gibbs steps:

• γi|· ∼ IG
T

2
,

TP
t=1
(yi,t−λi·ft)2

2

 , for all i = 1, ..., p.
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• λi|· ∼ N
 TP

t=1
ft·yi,t
TP
t=1

f2t

, γi
TP
t=1

f2t

 , for all i = 1, ..., p.

• a|· ∼ U (L,U) , where

L = max
n
max

t
{φt : |ft−1| ≥ 1} ,max

t
{ρt : |ft−1| < 1} , 0

o
,

U = min
n
min
t
{φt : |ft−1| ≤ 1} ,min

t
{ρt : |ft−1| > 1} , 1

o
and

φt =

³
−0.5 f2t

ln(zt)
− 1
´

¡
f2t−1 − 1

¢ , ρt =

³
1
ζ2t
− 1
´

¡
f2t−1 − 1

¢ .
• ζt|· ∼ U

µ
0, 1√

1−a+a·f2t−1

¶
, for all t = 1, ..., T.

• zt|· ∼ U
³
0, exp

n
−1
2
· f2t
1−a+a·f2t−1

o´
, for all t = 1, ..., T.

• f0|· ∼ N (0, s) I (Υ) , where Υ = {L ∪ U} and

L =

Ã
−
s

1

aζ21
− 1

a
+ 1,−

s
− f21
2a ln (z1)

− 1
a
+ 1

!
,

U =

Ãs
− f21
2a ln (z1)

− 1
a
+ 1,

s
1

aζ21
− 1

a
+ 1

!

• ft|· ∼ N (µt, σ
2
t ) I (Υ) , where

µt =

PP
i=1

λiγiyi,t

pP
i=1

λ2iγi

, σ2t =

PQ
i=1

γi

pP
i=1

λ2i γi

(10.14)

Υ =

(Ã
L,−

s
− f2t+1
2a ln (zt+1)

− 1
a
+ 1

!
∪
Ãs
− f2t+1
2a ln (zt+1)

− 1
a
+ 1, U

!)
,
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and

L = max

Ã
−
s

1

a · ζ2t+1
− 1

a
+ 1,−

q
−2 ¡1− a+ af2t−1

¢
ln (zt)

!
,

U = min

Ãs
1

aζ2t+1
− 1

a
+ 1,

q
−2 ¡1− a+ af2t−1

¢
ln (zt)

!
,

for t = 1, ..., T − 1.

• fT |· ∼ N (µT , σ
2
T ) I (L,U) ,where µT and σ2T are calculated as in formula (10.14)

and the bounds L,U are given by

L =

µ
−
q
−2 ¡1− a+ af2T−1

¢
ln (zT )

¶
,

U =

µq
−2 ¡1− a+ a · f2T−1

¢
ln (zT )

¶
.

10.3.3 Application

In this section an application of the latent factor ARCH model is presented using real

data. In detail, the daily exchange rate of the US dollar (USD) and the Japanese Yen

(JPY) with respect to the Greek Drachma (GRD) are used. The data set is consisted of

845 multivariate observations concerning the period

(16/12/93− 2/5/97) and illustrated in Figure 10-1 (pp 163). Using the algorithm that

has been described in the previous section, a sample from the posterior density of the

latent factor ARCH model is generated and by using this sample, inferences about the

parameters can be derived.

In detail the MCMC algorithm was applied for 350000 iterations. The initial 150000

iterations were discarded as burn-in. In order to ensure that the Markov chain produced

by the algorithm gets in the target distributions the subsampling diagnostic was used.

This test pointed out that the proposed algorithm requires approximately 81000 iterations
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95% Credible Interval
Parameter Posterior Mean Lower Limit Upper Limit

λusd -16.43321606 -28.40609990 51.26371137
λjpy -2.27515464 -3.91430508 6.97497419
α 0.92577876 0.85203707 0.99999999

γusd 13.55768267 12.92785260 14.43662310
γjpy 27.07353838 27.34464947 27.62347193

Table 10.4: Posterior means and 95% credible intervals for the parameters of the latent
factor ARCH model

to get in the target distribution. The results of the diagnostic are presented in Figure

10-12.

The final sample was selected, by keeping 1 sample point every 20 iterations from

the remaining 200000 iterations . The final sample was consisted by 10000 points and

presented in Figure 10-13.

In addition, the final posterior sample was checked for convergence to the limiting

distribution by applying the test of Geweke (1992), Raftery and Lewis (1992) and Hei-

delberger and Welch (1983).

However, it has been observed the existence of an extremely high autocorrelation of

the parameter chains as it becomes obvious from Figure 10-13. For this reason, and

in order to save computer disk and memory, subsampling techniques were applied (see

Politis 1998; Politis et al., 1999) for the calculation of the 95% credible intervals for the

ergodic means of the parameters of the latent factor ARCH model. The construction of

the credible intervals is presented in detail in section 10.6.

The ergodic means and the 95% credible intervals of the parameters of the latent

factor ARCH model are included in Table 10.4.

Based upon the posterior ergodic mean for the parameter a (0.926) it becomes obvious

that the ARCH component is highly volatility persistent.

189



Subsampling Diagnostic for USA

iterations

R
^2

40000 60000 80000 100000 120000 140000

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Figure 10-12: Subsampling diagnostic plot for latent factor ARCH model
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Figure 10-13: MCMC output for parameters of latent factor ARCH model

191



10.4 Latent Factor GARCH Model

10.4.1 Introduction

A straightforward extension of the latent factor ARCHmodel is the latent factor GARCH

model. In this case, the unobserved component follows a GARCH process. In detail, the

latent factor GARCH model can be written with the following hierarchical structure of

conditional densities.

yt|λ,ft,Σ ∼ Np (λft,Σ) , (10.15)

ft|a, b, ft−1 ∼ N
¡
0, σ2t

¢
,

∆t = 1− a− b+ af2t−1 + bσ2t−1, t = 1, . . . , T ;

where yt is a p−variate realization of the stochastic process at time t, ft is the ‘unique’
common unobserved GARCH factor at time t, λ is the (p× 1)−variate vector of param-
eters reflecting the sensitivity of the common factor ft, Σ =diag

¡
γ1, ..., γp

¢
is a diagonal

(p× p) covariance matrix and a, b are the hyperparameter of the GARCH component

that take values in (0, 1) with restriction a + b < 1. The model (10.15) satisfies the

sufficient conditions which ensure the parameter identifiability; see Diebold and Nerlove

(1989). The unconditional variance-covariance matrix of the process yt is

V ar (yt) = λ · λ0 +Σ.

The parameter vector of (10.15) contains the hyperparameter a, the vector of loadings

λ, the vector of the unobserved component f =(f1, ..., fT ) , the ‘history’ f0 of the unique

unobserved component and the vector γ =
¡
γ1, ...,γp

¢
of the covariance matrix Σ.
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10.4.2 Bayesian Approach and the Auxiliary Variable Sampler

In this section a full Bayesian analysis of the latent factor GARCH model is presented

and an MCMC algorithm is proposed in order to take a sample from the posterior density

of model’s parameters.

Denoting all data by the T × p matrix Y =(y1, ...,yT ) , the joint posterior density of

model (10.15) can be written as

f (λ, f ,a, b,γ,f0|Y) ∝
TY
t=1

(f (yt|λ,ft,γ) f (ft|ft−1, a, b))π (λ,γ,a, b, f0) (10.16)

where π (λ,a, b,γ,f0) denotes the joint prior density of the parameters of the model. As-

suming a priori independence for the parameters, π (λ) ∝ constant, π (γ) ∝
µ

pQ
i=1

γi

¶−1
,

for i = 1, ...., p, a, b ∼ U (0, 1) , where U (·, ·) denotes the uniform distribution and

f0 ∼ N (0, s) are chosen. This results to a joint prior density of the form

f (λ,γ,a, b, f0) ∝
Ã

pY
i=1

γi

!−1
exp

½
−1
2
· f

2
0

s

¾
.

Then, the joint posterior density of the parameters of the latent factor GARCH model

can be written as

f (λ, f ,a, b,γ,f0|Y) = g (λ, f ,a, b,γ,f0) (10.17)

∝
Ã

pY
i=1

γ
T
2
+1

i

!−1Ã TY
t=1

q
1− a− b+ af2t−1 + bσ2t

!−1
exp

½
−1
2

f20
s

¾

exp

(
−1
2

TX
t=1

Ã
f2t

1− a− b+ af2t−1 + bσ2t
+

pX
i=1

(yi,t − λift)
2

γi

!)
.

The resulting full conditional densities of the above joint posterior density (10.17)are

not of standard form, so the auxiliary variable sampler is adopted in order to take sample

from the posterior density. The following Theorem reveals the usage of the auxiliary
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sampler in this case.

Theorem 22 If in the posterior density f (λ, f ,a, b,γ,f0|Y) in (10.17) we include a pos-
itive random variate u such that the joint density f (λ, f ,a, b,γ,f0, u|Y) takes the form

f (λ, f ,a, b,γ,f0, u|Y) ∝ I (u ≤ g (λ, f ,a, b,γ,f0)) , (10.18)

where I (·) is the indicator function, then the marginal density of (10.18)marginalize out
the auxiliary parameter u is given by (10.13) .

Proof:

f (x) =

Z
u

I (u ≤ g (λ, f ,a, b,γ,f0)) du

=

Z g(λ,f ,a,b,γ ,f0)

0

1du

= g (λ, f ,a, b,γ,f0) .

Based on the above Theorem, the proposed MCMC algorithm is given by the following

full conditional densities:

• u|· ∼ U (·, ·)

• γi|· ∼ IG (·, ·) , for all i = 1, ..., p, given that u is marginalized out.

• λi|· ∼ N (·, ·) , for all i = 1, ..., p, given that u is marginalized out.

• fT |· ∼ N (·, ·) , given that u is marginalized out.

• Sample a from U (·, ·) such as {u < g (λ, f ,a, b,γ,f0)} .

• Sample b from U (·, ·) such as {u < g (λ, f ,a, b,γ,f0)} .

• Sample ft, t = 1, ..., T − 1, from U (·, ·) such as {u < g (λ, f ,a, b,γ,f0)} .
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In the above algorithm the g (λ, f ,a, b,γ,f0) is not invertible with respect to its pa-

rameters a, b and ft, t = 1, ..., T − 1. For this reason Neal’s approach (2003) is adopted
in order to find out an interval I=(L,R) around the parameter of interest that con-

tains at least a big part of set S = {u < g (λ, f ,a, b,γ,f0)} . In detail, for parameter ft,
t = 1, ..., T − 1 an initial interval I=(L,R) of size w is randomly picked such as to con-
tain the current value of ft. This interval is expanded using the ’stepping out’ procedure

(Neal, 2003) such as to contain a big part of S. Then ft is uniformly sampled from the

interval I and each time that a new point is sampled out of S the interval is shrank -

using Neal’s (2003) shrink procedure- , until an ft from S is sampled. For the parameters

a and b the initial intervals are set equal to Ia = (0, 1− b) and Ib = (0, 1− a) respectively.

Then, a and b are uniformly sampled from Ia and Ib respectively and each time that a

new point is sampled out of S the intervals are narrowed - using the shrink procedure

(Neal, 2003). However, the correlation between these parameters is very high and for

this reason we choose to update the parameters a and b simultaneously by a dependent

Metropolis-Hasting step. In detail, as candidate density for the Metropolis-Hastings step

is chosen to be the bivariate Normal density. The mean vector of this density is the

previous values for a and b and the variance covariance matrix is chosen to incorporate

the high correlation between a and b and the acceptance rate to be approximately 50%.

10.4.3 Application

In this section an application of the latent factor GARCH model is presented using real

data. In detail, the daily exchange rate of the US dollar (USD) and the Japanese Yen

(JPY) with respect to the Greek Drachma (GRD) is used. The data set is consisted of

845 multivariate observations concerning the period

(16/12/93− 2/5/97) and illustrated in Figure 10-1 (pp 163). Using the algorithm that

were described in the previous section, a sample was generated from the posterior density

of the model and used for inference purposes about the parameters.

In order to generate a sample from the posterior density of the parameters of the
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95% Credible Interval
Parameter Posterior Mean Lower Limit Upper Limit

λusd 6.99887723 8.85351217 10.80469852
γusd 12.37400806 0.95026350 14.23300884
λjpy 1.29230672 0.95026350 1.65374465
γjpy 27.30040048 27.04663690 27.54712884
α 0.71165224 0.71020596 0.71284911
b 0.26516888 0.26400163 0.26653133

Table 10.5: Posterior means and 95% credible intervals for the parameters of the latent
factor GARCH model.

latent factor GARCH model, the proposed MCMC algorithm was applied for 550000

iterations. The initial 50000 sample points were discarded as burn-in. In order to ensure

that the Markov chain that produced by the algorithm gets in the target distributions, the

subsampling diagnostic (see section 4.3 and Giakoumatos et al., 1999) was applied. This

test pointed out that the proposed algorithm requires approximately 27000 iterations to

get in the target distribution. The results of the diagnostic are presented in Figure 10-14.

The final sample was selected, by choosing 1 sample point every 20 iterations from

the remaining 500000 iterations (in order minimize the requirements of CPU and storage

memory capacity). The final sample is consisted by 25000 points and presented in Figure

10-15.

In addition, the final sample was also checked for convergence to the limiting distri-

bution by the criteria of Geweke (1992), Raftery and Lewis (1992) and Heidelberger and

Welch (1983).

However, an extremely high autocorrelation of the parameter chains was observed (as

this becomes obvious from Figure 10-15). For this reason, subsampling techniques (see

Politis 1998, Politis et al., 1999) are used to calculate the 95% credible intervals for the

ergodic means of the parameters of the latent factor GARCH model. The construction

of the credible intervals is presented analytically in section 10.6.

The ergodic means and the 95% credible intervals of the parameters of the latent

factor GARCH model are included in Table 10.5.
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Figure 10-14: Subsampling diagnostic plot for latent factor GARCH model
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Figure 10-15: MCMC output for parameters of latent factor GARCH model
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From the posterior ergodic means for the parameters a (0.71) and b (0.26) it is obvious

that the GARCH component is highly volatility persistent (E (a) +E (b) = 0.97).

10.5 Comparison

The same idea of comparing models that has been presented on section 8.2 for the case of

univariate time-varying volatility models, has been also applied here for the comparison

of the presented multivariate models. In order to choose between two models M1 and

M2, one of the procedures suggested by Gelfand et al. (1992) is followed. In detail, let Zt

be the random variable representing future points. Then, the model M1 (M2) is chosen

according to whether D > 0 (D < 0) , where

D = log


T−1Q
t=1

π
¡
Zt+1 = yt+1|Ψt,θ;M1

¢
T−1Q
t=1

π
¡
Zt+1 = yt+1|Ψt,θ;M2

¢
 ,

yt+1 is the realization of the stochastic process at time t+1,Ψt is the available information

up to time t and θ is the vector of the posterior means of the parameters of the specific

model. Note that exp (D) is called pseudo-Bayes factor (Gelfand et al, 1992).

Following Pitt and Shephard (1999a, 1999b), π
¡
Zt+1 = yt+1|Ψt,θ;Mk

¢
is estimated

via filtering methods. In detail, an estimate of π
¡
Zt+1 = yt+1|Ψt,θ;Mk

¢
is given as

follows. Initially, samples of size K (we use K = 10000) are obtained of the unob-

served component (or components) of the model Mk, for t = 1, ..., T, using Fi
t+1 ∼

π
¡
Ft+1|Ψt,θ;Mk

¢
, for i = 1, ..., K. The above density is easily derived for both models

(7.8) and (10.12) . Then an estimate is given by

π̂
¡
Zt+1 = yt+1|Ψt,θ;Mk

¢
=
1

K

KX
i=1

π̂
³
Zt+1 = yt+1|Fi

t+1,θ;Mk

´
,
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Model
Latent factor ARCH -4899.79
Latent factor GARCH -4818.11
Unobserved ARCH -5263.43
Stochastic volatility -4910.13

Table 10.6: Model comparison

which is the result of the Monte Carlo integration of

π
¡
yt+1|Ψt,θ;Mk

¢
=

Z
π
¡
yt+1|Ft+1,θ;Mk

¢
π
¡
Ft+1|Ψt,θ;Mk

¢
dFt+1.

This technique presupposes that the density π
¡
yt|Ft,θ;Mk

¢
can be evaluated and sim-

ulated, something which is valid for parameter-driven models that are analyzed in this

chapter.

In the Table 10.6 the results for the quantity log
µ
T−1Q
t=1

π̂
¡
Zt+1 = yt+1|Ψt,θ;M1

¢¶
are

presented and used for comparison purposes.

Note, that similar comparisons have been conducted by Vrontos, Giakoumatos, Della-

portas and Politis (2001) between the bivariate models. In detail, Vrontos, Giakoumatos,

Dellaportas and Politis (2001) compared the unobserved ARCH model, the GARCH

model with constant conditional correlations (Bollerslev 1990) and the ARCH model re-

cently introduced by Jeantheau (1998). According to Vrontos, Giakoumatos, Dellaportas

and Politis (2001) the unobserved ARCH model seems to be preferable for the one ahead

predictions for the analyzed dataset.

In addition, Giakoumatos, Dellaportas and Politis (2004b), compared the multivariate

unobserved ARCH, the latent Factor ARCH and the latent factor GARCH model with

a dataset of four exchange rates and the results indicated that the latent factor GARCH

is preferable than the alternative models.
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10.6 Technical Details

10.6.1 Sampling from truncated Inverse Gamma

Suppose, that a sample point x is required from the density f (x) ∝ 1
xa+1

· exp ¡− b
x

¢ ·
I (x < d) . Instead of sampling x, y can be sampled from f (y) ∝ ya−1· exp (−by)·I ¡y > 1

d

¢
,

and we set x = 1
y
. In order to sample from the last density, one positive latent variable

m is introduced such that f (y,m) ∝ exp (−by) · I (m < ya−1) · I ¡y > 1
d

¢
. Then using the

Gibbs sampler, sampling points are drawn from the full conditional densities which are

of known form:

• y|m ≡ exp (−by) I (y > k) where k = max
x

¡
a−1√m, 1

d

¢
. In order to sample from

truncated exponential see Damien et al (1999).

• m|y ∼ U (0, ya−1)

10.6.2 Construction of (1-a)100% credible interval for the mean

using subsampling

Let (X1,X2, ...,XT ) be the observed time series. This time series is assumed to be strong

mixing, and asymptotically stationary. The basic idea of subsampling is to approximate

the sampling distribution of a statistic ( in our case the sample mean x) based on the

values of the same statistic recomputed over smaller subsets of the data that retain the

dependence structure of the observations. Subsets of size b =
j√

T
k
are considered,

where bc is the integer part of a number, so that we are led to consider the B = N−b+1
“blocks” of consecutive observations of the type

¡
Xi,X i+1, ...,X i+b−1

¢
, for i = 1, ..., B.

Let xi the sample mean of the subset
¡
Xi,X i+1, ..., X i+b−1

¢
and x the overall mean,

then the subsampling estimate of the sampling distribution function Distx−E(X) (x) ≡
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P (x−E (X) ≤ x) is given by

L (x) ≡ 1

B

BX
i=1

I

Ã
xi ≤ x

√
T√
b
+ x

!

Using the above sampling distribution function we can calculate a valid (1− α) 100%

credible interval for the mean which is given by

(x− q (1− a/2) , x− q (a/2))

where q (t) is the t−quantile of the subsampling distribution L (x) , i.e.,

q (t) = inf {x : L (x) ≥ t} . Note that, for the parameter a of the model (10.12) which is
constrained to (0, 1) , a logit transformation has been applied and then it is constructed

the credible interval defined in (−∞,+∞) and obtain the required interval bounds by
retransforming to the parameter a. For more details subsampling, see Politis (1998),

Politis, Romano and Wolf (1999).
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Chapter 11

Discussion

This Thesis presents new MCMC algorithms for certain univariate and multivariate time-

varying volatility models. Easy to implement and fast to converge MCMC algorithms are

presented for the ARCH, GARCH, stochastic volatility, unobserved ARCH, multivari-

ate stochastic volatility, multivariate unobserved ARCH, latent factor ARCH and latent

factor GARCH models. All the proposed MCMC algorithms utilize the power of the

auxiliary variable sampler and are consisted only by Gibbs steps.

Overall, the auxiliary variable sampler is a very powerful technique for sampling

from posterior distribution of univariate and multivariate models. However, in some

cases it produces high autocorrelation in the MCMC. In this topic additional research

is required. A recent approach has been suggested by Neal (2003), and on these lines

further investigation might be worthwhile.

Furthermore, this Thesis exploits the predictive ability of the models in order to

construct model comparison tests. We feel that Bayesian model determination methods

such as reversible jump (Green, 1995) or marginal likelihood approximations may not

well suited for financial time series data where forecasting is of primary importance.

Finally, another promising topic for future research is the application of the MCMC

methods in parameter-driven models defined on a continuous time pattern (Hull and

White, 1987; Barndorff-Nielsen and Shephard, 2001; Roberts and Stramer, 2001; Eraker,
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Johannes and Polson, 2003; Roberts, Papaspiliopoulos and Dellaportas, 2004).
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